Defects in Metal 3D Printing

State-of-the-art metal 3D printers promise to revolutionize manufacturing, yet they have not reached optimal operational reliability. The challenge is to control complex laser–powder–melt pool interdependency (dependent upon each other) dynamics. We used high-fidelity simulations, coupled with synchrotron experiments, to capture fast multitransient dynamics at the meso-nanosecond scale and discovered new spatter-induced defect formation mechanisms that depend on the scan strategy and a competition between laser shadowing and expulsion. We derived criteria to stabilize the melt pool dynamics and minimize defects. This will help improve build reliability.

ImageImage(s) courtesy of Saad A. Khairallah, Aiden A. Martin, Jonathan R. I. Lee, Gabe Guss, Nicholas P. Calta, Joshua A. Hammons, Michael H. Nielsen, Kevin Chaput, Edwin Schwalbach, Megna N. Shah, Michael G. Chapman, Trevor M. Willey, Alexander M. Rubenchik, Andrew T. Anderson,Y. Morris Wang, Manyalibo J. Matthews, Wayne E. King

Previous Post in EXAMPLES Back to EXAMPLES     Next Post in EXAMPLES