
LLNL-SM-446033

Getting Data Into VisIt

July 2010

Version 2.0.0

Brad Whitlock

Law
ren

ce

Live
rm

or
e

Nati
on

al

Lab
or

ato
ry

ii

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trade-
mark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Liver-
more National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
iii

iv

Table of Contents
Introduction
Manual chapters . 2
Manual conventions . 2
Strategies . 2
Picking a strategy . 3
Definition of terms . 4

Creating compatible files
Creating a conversion utility or extending a simulation . 7
Survey of database reader plug-ins . 9

BOV file format . 9
X-Y Curve file format. 12
Plain text ASCII files . 12
NETCDF files . 13
HDF5 files. 13

Writing Silo files . 13
Using the Silo library . 14
Inspecting Silo files. 16
Silo files and parallel codes . 16
Creating a new Silo file. 16
Dealing with time . 18
Option lists . 19
Writing a rectilinear mesh. 20
Writing a curvilinear mesh . 23
Writing a point mesh. 26
Writing an unstructured mesh. 29
Writing a scalar variable . 35
Single precision vs. Double precision. 47
Writing expressions . 47
Creating a master file for parallel . 48

Writing VTK files . 54
Getting started with visit_writer . 55
Regular meshes with data . 56
Rectilinear meshes with data . 58
Curvilinear meshes with data . 60
Point meshes with data . 63
Unstructured meshes with data . 64
Creating a master file for parallel (.visit file) . 66

Creating compatible files II Advanced topics
Writing vector data. 69
Adding metadata for performance boosts . 72

Writing data extents . 72
Writing spatial extents . 75

Ghost zones . 76
Writing ghost zones to your files . 78

Materials . 83

Creating a database reader plug-in
Structure of VisIt . 89

plug-ins . 91
Starting your plug-in . 92

Picking a database reader plug-in interface . 92
Using XMLEdit . 92
Generating a plug-in code skeleton. 96
Building your plug-in . 97
Calling your plug-in for the first time. 100

Implementing your plug-in . 101
Required plug-in methods. 101
Debugging your plug-in . 103
Opening your file . 105
Returning file metadata. 106
Returning a mesh . 113
Returning a scalar variable . 126
Returning a vector variable. 127
Using a VTK reader class . 129

Advanced topics . 129
Returning cycles and times . 129
Auxiliary data . 134
Returning ghost zones. 139
Parallelizing your reader . 141

Instrumenting a simulation code
Architecture. 143
Using libsim . 146

Getting libsim . 146
Building in libsim support . 146
Initialization . 147
Restructuring the main loop . 152
Using libsim in a Fortran simulation . 158
Using libsim in a parallel Fortran simulation . 161
Running an instrumented simulation . 166
Connecting to an instrumented simulation from VisIt . 166

Writing data access code . 167
The VisIt Data Interface . 168
vi

How data access functions are called . 168
Making data access functions available . 170
Data access function for metadata . 172
Data access function for meshes . 183
Rectilinear meshes . 185
Curvilinear meshes . 188
Point meshes . 192
Unstructured meshes. 194
AMR meshes. 199
CSG meshes . 206
Interleaved coordinates . 212
Data access function for variables . 213
Data access function for curves . 216
Data access function for materials . 218
Data access function for the domain list . 222
vii

viii

Chapter 1 Introduction
1.0 Overview

VisIt is a free, open source, platform independent, distributed, parallel, visualization tool
for visualizing data defined on two- and three-dimensional structured and unstructured
meshes. VisIt’s plug-in architecture allows it to perform a wide variety of plotting and data
processing operations, and also allows VisIt to import data from many different data
formats.

This manual explains in detail how to get your data into VisIt, concentrating on three main
strategies: writing compatible files, writing a new plug-in for VisIt, or instrumenting a
simulation code. In addition to providing the how-to’s of getting your data into VisIt, this
manual also presents reasons for why you might choose one strategy over another.

This manual is geared towards someone who wants to visualize and analyze data using
VisIt. VisIt reads a large number of file formats so users of some existing simulation
software will be able to use VisIt right away. This manual is for the user who has data files
that VisIt does not read, or who wants to directly access data from a homegrown
simulation code. Whichever the case, this manual assumes familiarity with computer
programming since all of the covered approaches for getting data into VisIt require some
programming. The examples in this manual are written primarily using the C and C++
programming languages, though relevant examples for the Fortran and Python languages
are also included.
Overview Getting Data into VisIt Manual 1

Introduction
2.0 Manual chapters

This manual is broken down into the following chapters:

Chapter title Chapter description

Introduction This chapter.

Creating compatible fi les Describes how to store data into file
formats that VisIt already reads.

Creating compatible fi les
II Advanced topics

Describes how to store metadata to
boost VisIt’s performance and also
covers more exotic types of data that
can be stored into file formats that
VisIt already reads.

Creating a database
reader plug-in

Describes how to create a new data-
base reader plug-in for VisIt so it can
read your own data file format.

Instrumenting s imulation
codes

Describes how to instrument your
simulation code so VisIt can directly
access its data without the need to
write files.

3.0 Manual conventions

This manual uses the following conventions:

Element All GUI elements, like windows, menus, and buttons will
use bold helvetica.

Chapters All references to other chapters will use Bold Times.

Documents All document or file names will be italicized.

4.0 Strategies

Often, the first strategy to consider when trying to get your data into VisIt is creating data
files using a data format that VisIt can already read. This is usually the simplest method
for getting data into VisIt as it can be accomplished by adding a new I/O module to your
simulation code or it can be achieved by creating an external data conversion utility.

Changing your simulation code to write out data that VisIt can read is sometimes not an
option. For example, you might not have the simulation’s source code or perhaps there is
Manual chapters 2

Introduction
too much risk involved in changing the source code. In addition, you might have gigabytes
of archived data that you’ve written using your simulation’s native data format and now
you want to visualize that data in VisIt. If any of these cases apply to your situation then
you might want to consider writing a database reader plug-in for VisIt so VisIt can natively
understand your simulation code’s data format.

If you want to maintain your current data format but you don’t want to write a database
reader plug-in for VisIt, you have another option: instrument the simulation code. VisIt
provides a modestly sized library that contains C-Language functions that you can use to
instrument your simulation code. When a simulation code is instrumented, VisIt can
connect to it and access any of the arrays that you expose. This approach lets VisIt
visualize the data from your simulation code directly without the need to write files.

5.0 Picking a strategy

The strategy you use to get your data into VisIt depends on your situation. The following
table indicates reasons when you might pick one strategy over another.

Strategy Reasons when to use

Create compatible
files

•You have access to your simulation code’s source
code and one of VisIt’s supported file formats can
express your data.

•You can write a conversion utility and don’t mind
using it to copy the existing data into a new data
format.

Write a database •You have written a lot of data files using your
reader plug-in own data format or a format that VisIt does not

read.

•Changing the simulation’s source code is not an
option.

•VisIt’s supported file formats can’t fully capture
your data’s structure or content.

•Your data format is already supported in another
visualization application.

Instrument simula-
tion code

•You want to use VisIt to inspect your data as it is
calculated.

•You don’t want to change your simulation code
so it writes a different data format.

•Your simulation code is written in the C, C++, or
Fortran programming languages.
Picking a strategy 3

Introduction
The following table indicates reasons why you would not pick one of the given strategies.

Strategy Reason to not use

Create compatible
files

•You don’t want to change or are unable to change
your simulation’s source code

•You don’t want to replicate data in another data
format, taking up more storage.

•Your data format is already supported in another
visualization application

Write a database •Developing a VisIt database reader plug-in can be
reader plug-in difficult, though this manual aims to lessen the

difficulties.

•You need to run VisIt on several platforms and
you don’t want to build the plug-in on all of those
platforms.

•You don’t want to maintain a VisIt plug-in. Note
that you could donate the plug-in to the VisIt
development team.

Instrument simula- •You don’t want to change or are unable to change
tion code your simulation’s source code.

•Your simulation code is not written in C, C++, or
Fortran.

After examining the above tables, you probably have a pretty good idea of which strategy
will work best for getting your data into VisIt. The following chapters will provide details
on how best to get your data into VisIt using each of the recommended strategies.

6.0 Definition of terms

This section defines some of the terms that will be used to describe data structures that
VisIt can visualize. These terms are defined here because many branches of science that
might use VisIt to visualize and analyze data have their own terms. It is hoped that adding
Picking a strategy 4

Introduction
the definition of terms here will reduce ambiguity when different types of data are covered
in later chapters.

Term Definition

Curvilinear
mesh

A curvilinear mesh is a mesh composed entirely of quad-
rilateral or hexahedral cells. Furthermore, the mesh is
constructed such that all zones exist in a logically contig-
uous brick having NX zones in the X dimension, NY
zones in the Y dimension, and in the case of 3-D: NZ
zones in the Z dimension. Each node in the mesh requires
an explicitly provided coordinate value.

Domain A domain is a unit of work that corresponds to a piece of
the mesh that is handled by a given processor when run-
ning in parallel. Meshes are often split into multiple
pieces, or domains, that can be assigned to different pro-
cessors in order to handle larger simulations.

Ghost zone A ghost zone is a zone on the boundaries of domains and
it is used to ensure that each domain knows the data value
on the other side of the domain boundary so operations
requiring continuity do not give rise to discontinuities at
domain boundaries.

Material A physical material such as air or steel that is assigned to
various zones in a mesh to indicate the types of materials
that make up the simulated model. Zones that contain
more than one material are said to be “mixed” since their
compositions are determined by a set of volume fractions
of various materials in the zone.

Mesh A mesh is a structure composed of zones.

Node A mathematical point. Nodes are used to describe the
coordinates for zones that make up a mesh.

Node-cen-
tered

Node-centered is a term that applies to data stored on a
mesh; it means that there is one data value for each node
in the mesh and that values in the zone are created by
interpolating data from the nodes.

Point mesh A mesh consisting of a set of locations, or points, in
space. These nodes are not connected.
Picking a strategy 5

Introduction
Term Definition

Rectilinear A rectilinear mesh is a mesh composed entirely of quadri-
mesh lateral or hexahedral cells that are all the same shape.

Furthermore, the mesh is constructed such that all zones
exist in a contiguous brick having NX zones in the X
dimension, NY zones in the Y dimension, and in the case
of 3-D: NZ zones in the Z dimension. The coordinates for
the nodes are supplied as lists of NX, NY, or NZ elements
from which the full complement of nodes can be created.

Time step Simulations proceed by calculating their state at the cur-
rent time and then making adjustments that are needed to
advance the state of the simulation to the next time. This
is done in an iterative cycle. One iteration of the simula-
tion is called a time step.

Unstruc- An unstructured mesh consists of a set of nodes and a set
tured mesh of zones. The set of zones may consist of many different

zone types such as triangles, quadrilaterals, tetrahedra,
hexahedra, prisms, pyramids, or other polyhedra. Adja-
cent zones share the same nodes and the nodes are repre-
sented as a shape type identifier and a list of the nodes
that comprise the zone.

Zone-cen-
tered

Zone-centered is a term that applies to data stored on a
mesh; it means that there is one data value for each zone
in the mesh.

Zone/Cell Zone and Cell are used interchangeably in this document.
A zone is a shape that unites one or more nodes into a
connected structure where the nodes are the vertices of
the connected structure. Point meshes can have nodes as
zones. 1-D meshes contain zones that are lines that con-
nect nodes. 2-D meshes contain 2-D shapes such as trian-
gles and quadrilaterals that connect nodes together. 3-D
meshes contain volumetric polyhedra such as: tetrahe-
drons, hexahedrons, prisms, pyramids, etc.
Picking a strategy 6

Chapter 2 Creating compatible files
1.0 Overview

This chapter elaborates on how to create files that VisIt can read. The two main methods of
creating files that VisIt can read are: creating a conversion utility and altering a simulation
code to write out its data in a new file format. This chapter discusses the merits of each
approach so you can decide which is best for your situation. Once you settle on an
approach, you can elect to write out Silo files from C or Fortran, or you can write out VTK
files from any programming language. If you decide to write out VTK files, this chapter
presents examples for doing so in C and Python.

2.0 Creating a conversion utility or extending a simulation

Creating files using a data format that VisIt can read is often the easiest strategy for getting
your data into VisIt. You can change your simulation code to natively write its data to a
format that VisIt can read, such as Silo or VTK. Alternatively, you can create a conversion
utility to post-process your data files into a format that VisIt can read. Both of these
approaches have their pros and cons and, fortunately, the programming done to achieve
either is essentially the same.

Approach Pros Cons

Modify
simulation
code

•Data is in a format that can
be immediately visualized

•Depending on the simula-
tion code’s implementa-
tion language, there may
not be a binding to a suit-
able I/O library.
Overview Getting Data into VisIt Manual 7

Creating compatible files
Approach Pros Cons

Create con-
version util-
ity

•Simulation code does not
have to be changed

•Replicates data on disk

•Extra step is required to
visualize simulation data

•Utility must be maintained

•Utility must read data from
file before it can be written
to new data format.

The chief differences between the two approaches arise in where the new code is located.
When changing a simulation code, you will most likely add a new I/O module that can
dump out your simulation’s data for the purpose of visualization. When creating a
conversion utility, you are creating a stand-alone program that you have to run on the data
after the simulation has completed.

A very simple simulation code’s main loop might look like the example below. The
purpose of the simple pseudocode listing is to point out where you might want to add
additional routines that can write your data to files compatible with VisIt. You might want
to provide a switch that tells your program to write data files that VisIt can read in addition
to your regular data format. Alternatively, you might opt to just write files that are
compatible with VisIt.

/* SIMPLE SIMULATION SKELETON */
void write_vis_dump()
{

if(write_data_for_visit)
/* Add your code to write VisIt data files here. */

else
write_vis_dump_using_regular_format();

}
int main(int argc, char **argc)
{

read_input_deck();
do
{

simulate_one_timestep();
write_vis_dump();

} while(!simulation_done());
return 0;

}

If you choose to write a conversion utility, a pseudocode skeleton might look something
like this:

/* SIMPLE CONVERSION UTILITY SKELETON */
void write_to_visit_format(const char *, MeshAndData *)
{

/* Add your code to write a VisIt data file here. */
Overview 8

Creating compatible files
}
void convert_file(const char *filename)
{

struct MeshAndData data;
char newfilename[1024];
read_data_from_regular_format(filename, &data);
create_visit_filename(filename, newfilename);
write_to_visit_format(newfilename, &data);
free_data(&data);

}
int main(int argc, char *argv[])
{

for(int i = 1; i < argc; ++i)
convert_file(argv[i]);

return 0;
}

3.0 Survey of database reader plug-ins

VisIt provides database reader plug-ins for over one hundred different file formats. You
can find a table listing the supported formats and links to more information at
http://www.visitusers.org/index.php?title=Detailed_list_of_file_formats_VisIt_supports.
This chapter will talk briefly about some simple file formats before covering the Silo and
VTK file formats. Silo and VTK will be covered much more extensively because they are
two of the most general formats and they are capable of describing a wide variety of
different data constructs.

Silo is a C-language library with a well-defined application programming interface (API)
for writing out the types of objects in which most simulations are interested (e.g. meshes,
variables). Silo files can be written to two different underlying file structures: HDF5 and
PDB; both are self-describing, platform independent, binary file formats. If you write a
file on one platform using the Silo library, it can be read by the Silo library on any other
platform. Silo bindings also exist for the Fortran and Python programming languages.
Fore more information, see the Silo User’s Guide.

The VTK file format is written by various C++ classes in VTK (Visualization Tool Kit)
and is most often stored in ASCII text files. The VTK file format does, more recently,
support an XML-based file format, which includes support for binary data and
compression. However, this manual will provide example code to write data into VTK’s
legacy ASCII format. The example code will use VisIt’s visit_writer library to
demonstrate creating VTK files without using the VTK library itself so the applications
will be very lightweight.

3.1 BOV file format

As mentioned earlier, VisIt can read over one hundred file formats and this manual will
mainly concentrate on two of them. There are other file formats that might be useful to
Survey of database reader plugins 9

Creating compatible files
you depending on how you have written your data files. For example, if you have written
your data as a binary file consisting of 1 variable on a NX*NY*NZ rectilinear mesh then it
is possible that you can use VisIt’s BOV (“Brick of Values”) database reader plug-in and
not have to do any data conversion.

VisIt’s BOV database reader plug-in is used to read data out of a binary file containing just
the data values. If your data file was written using code resembling the following code
fragments then you might be able to use VisIt’s BOV database reader plug-in.

Listing 2-1: bov.c: C-Language example for creating data that the BOV plug-in can read.

/* Example C code */
float data[NZ][NY][NX];
FILE *fp = fopen(“bov.values”, “wb”);
fwrite((void *)data, sizeof(float), NX*NY*NZ, fp);
fclose(fp);

Listing 2-2: fbov.f: Fortran language example for creating data that the BOV plug-in can read.

c Example Fortran code
real values(NX, NY, NZ)
open (unit=output, file=’fbov.values’, status=’replace’,

. form=’unformatted’)
write(output) values
close (output)

Files written in this manner will need an auxiliary data header text file stored along side of
the real data file to contain information such as the dimensions of the data and its type and
endian representation. If this sounds like what you write from your simulation code then
you should try using the BOV reader. Before trying to open the data using VisIt’s BOV
database reader plug-in, you will have to write a BOV-compatible header file to
accompany your data files so VisIt knows how to read the binary data file.

Note that it is also possible to create a BOV header file that describes a set of binary brick
of value files. This is useful when you have multiple processors each writing their own
data files but you need to view them as a whole within VisIt. When you need this
functionality, you can provide a filename with wildcards for using the DATA_FILE
keyword. For example, you could add “DATA_FILE: file%04d.dat” to the BOV header file
to make VisIt treat all files matching the file%04d.dat pattern as separate domains within
the BOV dataset.

Example BOV header file:

TIME: 1.23456
DATA_FILE: file0000.dat
The data size corresponds to NX,NY,NZ in the above example code.
DATA_SIZE: 10 10 10
Survey of database reader plugins 10

Creating compatible files

Allowable values for DATA_FORMAT are: BYTE,SHORT,INT,FLOAT,DOUBLE
DATA_FORMAT: FLOAT
VARIABLE: what_I_call_the_data
Endian representation of the computer that created the data.
Intel is LITTLE, many other processors are BIG.
DATA_ENDIAN: LITTLE
Centering refers to how the data is distributed in a cell. If you
give “zonal” then it’s 1 data value per zone. Otherwise the data
will be centered at the nodes.
CENTERING: zonal
BRICK_ORIGIN lets you specify a new coordinate system origin for
the mesh that will be created to suit your data.
BRICK_ORIGIN: 0. 0. 0.
BRICK_SIZE lets you specify the size of the brick.
BRICK_SIZE: 10. 10. 10.

Additional BOV options:

BYTE_OFFSET: is optional and lets you specify some number of
bytes to skip at the front of the file. This can be useful for
skipping the 4-byte header that Fortran tends to write to files.
If your file does not have a header then DO NOT USE BYTE_OFFSET.
BYTE_OFFSET: 4

DIVIDE_BRICK: is optional and can be set to “true” or “false”.
When DIVIDE_BRICK is true, the BOV reader uses the values stored
in DATA_BRICKLETS to divide the data into chunks that can be
processed in parallel.
DIVIDE_BRICK: true

DATA_BRICKLETS: is optional and requires you to specify 3 integers
that indicate the size of the bricklets to create when you have
also specified the DIVIDE_BRICK option. The values chosen for
DATA_BRICKLETS must be factors of the numbers used for DATA_SIZE.
DATA_BRICKLETS: 5 5 5

DATA_COMPONENTS: is optional and tells the BOV reader how many
components your data has. 1=scalar, 2=complex number, 3=vector,
4 and beyond indicate an array variable. You can use “COMPLEX”
instead of “2” for complex numbers. When your data consists of
multiple components, all components for a cell or node are written
sequentially to the file before going to the next cell or node.
DATA_COMPONENTS: 1

Take the above example BOV header file template and save it to a new text file with a
“.bov” file extension. Next, edit the file and change some of the values to make it relevant
to the data file that you want to open. Once you’ve completed editing the “.bov” file, open
it in VisIt. If you see that the Plots menu is enabled and the Mesh and Pseudocolor
plot menus are enabled then you are halfway to success. If you can create a Pseudocolor
plot, click the Draw button, and have VisIt process your data until there is a picture in the
visualization window then this approach works for you and you can repeat it for your other
data files. If the picture is not quite what you expected then you can fine-tune the values in
Survey of database reader plugins 11

Creating compatible files
the “.bov” file until you get the picture that you want to see. The most common cause of
errors is failing to set the DATA_SIZE and DATA_FORMAT keywords to the right values
for your data file.

For large data files, you will want to add DATA_BRICKLETS and DIVIDE_BRICK
keywords to your BOV file. When these keywords are present, they instruct the BOV
reader to dynamically read smaller pieces of the BOV data file into different domains that
VisIt can process in parallel (when you use a parallel installation of VisIt). When used
with DIVIDE_BRICK, DATA_BRICKLETS allows you to specify the size of a bricklet.
The values used for the bricklet size divide evenly into the total data size that you provided
with the DATA_SIZE keyword.

3.2 X-Y Curve file format

VisIt is used to examine and analyze a wide variety of data in 2D and 3D on many
different types of meshes. In addition to those capabilities, VisIt can also visualize and
process 1D curves, sometimes known as X-Y plots. VisIt’s Lineout mode can extract data
from a higher dimensional dataset and draw the resulting data as an X-Y plot, or a Curve
plot as it is known in VisIt terms. VisIt can also import X-Y data and use it to create Curve
plots. The Curve file format, which is barely more than a list of X-Y pairs, is outlined
below:

#curv1name
x0 y0
x1 y1
x2 y2
...
#curve2name
xn yn
xn1 yn1
...

As shown in the example Curve file, the Curve file format can contain data for more than 1
set of X-Y pairs. The name of each pair is indicated in a ‘#’ comment line. The X-Y pairs
follow until the end of the file or until a new curve is declared using another ‘#’ comment
line. If you write data to the Curve file format then the file extension should be “.curve” to
ensure that VisIt recognizes it as a Curve file.

3.3 Plain text ASCII files

Many software programs, including VisIt, can read tables of numeric text. These files are
called plain text ASCII files and they contain columns of numbers separated by
whitespace or commas. When VisIt reads plain text ASCII files, you can specify some
read options that determine how VisIt presents the data for plotting. This is necessary
because of the myriad of ways that data can be stored in tabular form. For example, VisIt
provides options to treat the table as data values on a 2D mesh, or as columns of 1D
particle data.
Survey of database reader plugins 12

Creating compatible files
3.4 NETCDF files

NETCDF is a library that allows codes to write self-describing array data to a binary file.
This format is very popular in the climate research community and VisIt provides a
NETCDF reader. Since NETCDF files are for array data only, they lack a mechanism to
represent higher level constructs such as meshes in the file. As a result, many simulation
codes write out their mesh data as a set of arrays whose relationship is understood by the
simulation code. The relationship between arrays is known as a convention. Conventions
present a problem for other software that is not aware of the conventions used to store the
data. VisIt’s NETCDF reader is aware of a few conventions for specific simulation codes
and it attempts to implement a subset of the CF convention for climate data. Any other
NETCDF files that VisIt’s reader cannot associate with a particular convention are treated
generically by VisIt’s “basic” NETCDF reader. The basic NETCDF reader serves up data
as independent 1D, 2D, 3D (possibly time-varying) arrays. If you write your data using the
NETCDF library, VisIt will usually be able to present it in a suitable fashion.

3.5 HDF5 files

HDF5 format is a binary format that allows codes to write hierarchical, self-describing
array data to a file. More information on HDF5 is available at
http://www.hdfgroup.org/HDF5. As with NETCDF, HDF5 is mainly a format for storing
arrays though it does permit storing structures and more complex data types. Simulation
codes mainly use HDF5 to store the independent arrays that make up their data model.
This means that while the data arrays are described by the file, the relationships between
them are not. Libraries such as Silo are built on top of HDF5 to provide these semantics.

VisIt takes a slightly different approach with HDF5 than it does for NETCDF in that each
“flavor”, or HDF5 convention, is read by a separate HDF5 reader plugin. The NETCDF
reader incorporates all of the NETCDF readers into a single plugin. Many of the HDF5
reader plugins are for specific simulation codes and some are more general, attempting to
provide a generic view of the HDF5 data. Finally, some HDF5 readers such as VisSchema
and XDMF use an auxiliary XML file to describe how various arrays in the HDF5 file are
assembled into higher level constructs such as meshes. If you use HDF5 to store your data,
chances are that you will be able to create an XML file that tells the VisSchema or XDMF
reader how to read your file in the manner that you intended when you stored the data. For
more information on creating an XML file for the XDMF reader, see
http://www.xdmf.org/index.php/XDMF_Model_and_Format.

4.0 Writing Silo files

If you are writing a conversion utility or if you have a simulation code written in C, C++,
or Fortran then writing out Silo files is a good choice for getting your data into VisIt. This
section will illustrate how to use the Silo library to write out various types of scientific
data. Since the Silo library provides bindings for multiple languages, including C, Fortran,
Writing Silo files 13

Creating compatible files
and Python, the source code examples that demonstrate a particular topic will be given in
more than 1 programming language, when appropriate. One goal of this section is to
provide examples that are complete enough so that they can be readily adapted into
working source code. In fact, most of the examples in this chapter are available as working
programs in the accompanying “Getting your data into VisIt” code distribution. This
section will not necessarily explain all of the various arguments to function calls in the
Silo library. You can refer to the Silo User’s Guide for more information.

4.1 Using the Silo library

VisIt is always built with support for reading Silo databases so Silo can be a good file
format in which to store your data. This subsection includes information about using Silo
such as including the appropriate header files and linking with the Silo library.

4.1.1 Including Silo

When using any library in a program, you must tell the compiler about the symbols
provided by the library. Here is what you need to include in your source code in order to
use Silo:

C-Language:

#include <silo.h>

Fortran language:

include “silo.inc”

4.1.2 Linking with Silo

Before you can build a program that uses Silo, you must locate the Silo include files and
the Silo library. Silo is not distributed as part of the VisIt source code or binary
installations so you must obtain it separately unless you are developing on the Windows
platform. A link to the most up-to-date version of the Silo library’s source code can be
found on the VisIt Web site at http://www.llnl.gov/visit/source.html.

Once you download the Silo source code, building and installing it is usually only a matter
of running its configure script and running make. You can even use the build_visit script
from the VisIt Web site to build Silo with support for HDF5. An example command line to
build Silo with support for HDF5 is:

./build_visit --console --no-visit --no-thirdparty \
--thirdparty-path /usr/local \
--silo --hdf5 --szip

After you’ve configured, built, and installed the Silo library, your program will have to be
built against the Silo library. Building against the Silo library is usually accomplished by a
simple adaptation of your Makefile and the inclusion of silo.h in your C-language source
Writing Silo files 14

Creating compatible files

code. If you used build_visit to install Silo and its dependant libraries in /usr/local then
you would add the following to your Makefile, adjusting the values for the install location,
versions, and PLATFORM accordingly:

PLATFORM=i386-apple-darwin10_gcc-4.2

SZIP_DIR=/usr/local/szip/2.1/$(PLATFORM)
SZIP_CPPFLAGS=-I$(SZIP_DIR)/include
SZIP_LDFLAGS=-L$(SZIP_DIR)/lib
SZIP_LIBS=-lsz

HDF5_DIR=/usr/local/hdf5/1.8.4/$(PLATFORM)
HDF5_CPPFLAGS=-I$(HDF5_DIR)/include $(SZIP_CPPFLAGS)
HDF5_LDFLAGS=-L$(HDF5_DIR)/lib $(SZIP_LDFLAGS)
HDF5_LIBS=-lhdf5 $(SZIP_LIBS) -lz

SILO_DIR=/usr/local/silo/4.6.2/$(PLATFORM)
SILO_CPPFLAGS=-I$(SILO_DIR)/include $(HDF5_CPPFLAGS)
SILO_LDFLAGS=-L$(SILO_DIR)/lib $(HDF5_LDFLAGS)
SILO_LIBS=-lsiloh5 $(HDF5_LIBS) -lm

LDFLAGS=$(LDFLAGS) $(SILO_LDFLAGS)
LIBS=$(SILO_LIBS)
CPPFLAGS=$(CPPFLAGS) $(SILO_CPPFLAGS)

If your Makefile does not use CPPFLAGS then you might try adding the -I include
directives to CFLAGS, F77FLAGS, or whichever make variables are relevant for your
Makefile.

4.1.3 Using Silo on Windows

When you build an application using the Silo library on Windows, you can use the
precompiled Silo DLL and import library that comes with the VisIt source code
distribution for Windows. The VisIt 2.0.0 source code distribution for Windows is called
visitdev2.0.0.exe. Other versions of VisIt would, of course, include a different version
number in the filename. When you install the VisIt source code distribution for Windows,
you get all of VisIt’s project files, include files, and source code. In addition, certain
precompiled libraries such as Silo are included.

If you want to build an application against the Silo library provided with VisIt, add the
path to silo.h to your project file. If you build using a source code distribution for VisIt
2.0.0 that was installed in the default location, the path would be:
C:\VisItDev2.0.0\include\silo.

After setting the Silo include directory to your project file, make sure that the Silo’s import
library is in your linker path. You can add C:\VisItDev2.0.0\lib\Release our
C:\VisItDev2.0.0\lib\Debug to your project to ensure that your linker can find Silo’s import
library. Next, add silohdf5.lib to the list of libraries that are linked with your program.
That should be enough to get your program to build.
Writing Silo files 15

Creating compatible files
Before running your program, be sure to copy silohdf5.dll, hdf5dll.dll, sziplib.dll, and
zlib.dll from C:\VisItDev2.0.0\bin\Release or C:\VisItDev2.0.0\bin\Debug (depending on
whether your program is compiled with debugging information) into the directory where
your program will execute. Note that you must configure your program to use a
Multithreaded DLL version of the Microsoft runtime library or using the precompiled Silo
library may result in fatal errors.

4.2 Inspecting Silo files

Silo includes a command line utility called browser that can access the contents of Silo
files. To run browser, type “browser” into a terminal window followed by the name of a
Silo file that you want to inspect. Once the browser application opens the Silo file, type
“ls” to see the contents of the Silo file. From there, typing the name of any of the objects
shown in the object listing will print information about that object to the console.

4.3 Silo files and parallel codes

Before we delve into examples about how to use the Silo library, let’s first examine how
parallel simulation codes process their data in a distributed-memory environment. Many
parallel simulation codes will divide the entire simulated mesh into submeshes, called
domains, which are assigned to processors that calculate the fields of interest on their
domain. Often, the most efficient I/O strategy for the simulation code is to make each
processor write its domain to a separate file. The examples that follow assume parallel
simulations will write 1 file per processor. It is possible for multiple processors to append
their data to a single Silo file but it requires synchronization and that technique is beyond
the scope of the examples that will be presented.

4.4 Creating a new Silo file

The first step to saving data to a Silo file is to create the file and obtain a handle that will be
used to reference the file. The handle will be passed to other Silo function calls in order to
add new objects to the file. Silo creates new files using the DBCreate function, which
takes the name of the new file, access modes, a descriptive comment, and the underlying
file type as arguments.

In addition to being a library, Silo is a self-describing data model, which can be
implemented on top of many different underlying file formats. Silo includes drivers that
allow it to read data from several different file formats, the most important of which are:
PDB (A legacy LLNL file format) format, and HDF5 format. Silo files stored in HDF5
format often provide performance advantages so the following code to open a Silo file will
create HDF5-based Silo files. You tell Silo to create HDF5-based Silo files by passing the
Writing Silo files 16

Creating compatible files
DB_HDF5 argument to the DBCreate function. If your Silo library does not have built-in
HDF5 support then you can pass DB_PDB instead to create PDB-based Silo files.

Listing 2-3: basic.c: C-Language example for creating a new Silo file.

#include <silo.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{

DBfile *dbfile = NULL;
/* Open the Silo file */
dbfile = DBCreate(“basic.silo”, DB_CLOBBER, DB_LOCAL,

“Comment about the data”, DB_HDF5);
if(dbfile == NULL)
{

fprintf(stderr, “Could not create Silo file!\n”);
return -1;

}
/* Add other Silo calls here. */
/* Close the Silo file. */
DBClose(dbfile);
return 0;

}

Listing 2-4: fbasic.f: Fortran language example for creating a new Silo file..

progam main
implicit none
include “silo.inc”
integer dbfile, ierr

c The 11 and 22 arguments represent the lengths of strings
ierr = dbcreate(“fbasic.silo”, 11, DB_CLOBBER, DB_LOCAL,

. “Comment about the data”, 22, DB_HDF5, dbfile)
if(dbfile.eq.-1) then

write (6,*) ‘Could not create Silo file!\n’
goto 10000

endif
c Add other Silo calls here.
c Close the Silo file.

ierr = dbclose(dbfile)
10000 stop

end

In addition to using the DBCreate function, the previous examples also use the
DBClose function. The DBClose function ensures that all data is written to the file and
then closes the Silo file. You must call the DBClose function when you want to close a
Silo file or your file may not be complete.
Writing Silo files 17

Creating compatible files
4.5 Dealing with time

Silo files are a flexible container for storing many types of data. Silo’s ability to store data
hierarchically in directories can allow you to store multiple time states of your simulation
data within a single data file. However, since Silo is primarily an I/O library for storing
files that contain a single time step’s worth of data, VisIt only recognizes one time state per
Silo file. Consequently, when writing out data, programs that use Silo will write a new Silo
file for each time step. By convention, the new file will contain an index indicating either
the simulation cycle or a simple integer counter.

Listing 2-5: time.c: C-Language example for dealing with time.

/* SIMPLE SIMULATION SKELETON */
void write_vis_dump(int cycle)
{

DBfile *dbfile = NULL;
/* Create a unique filename for the new Silo file*/
char filename[100];
sprintf(filename, “output%04d.silo”, cycle);
/* Open the Silo file */
dbfile = DBCreate(filename, DB_CLOBBER, DB_LOCAL,

“simulation time step”, DB_HDF5);
/* Add other Silo calls to write data here. */
/* Close the Silo file. */
DBClose(dbfile);

}
int main(int, char **)
{

int cycle = 0;
read_input_deck();
do
{

simulate_one_timestep();
write_vis_dump(cycle);
cycle = cycle + 1;

} while(!simulation_done());
return 0;

}

The above code listing will write out Silo files with names such as: output0000.silo,
output0001.silo, output0002.silo, ... Each file contains the data from a particular
simulation time state. It may seem like the data are less related because they are stored in
different files but the fact that the files are related in time is subtly encoded in the name of
each of the files. When VisIt recognizes a pattern in the names of the files such as
“output????.silo”, in this case, VisIt automatically groups the files into a time-varying
database. If you choose names for your Silo files that cannot be grouped by recognizing a
numeric pattern in the trailing part of the file name then you must use a .visit file to tell
Writing Silo files 18

Creating compatible files
VisIt that your files are related in time. For more information about .visit files, consult the
VisIt User’s Manual.

4.6 Option lists

Many of Silo’s more complex functions accept an auxiliary argument called an option list.
An option list is a list of option/value pairs and it is used to specify additional metadata
about the data being stored. Each Silo function that accepts an option list has its options
enumerated in the Silo User’s Manual. This manual will cover only a subset of available
options. Option lists need not be passed to the Silo functions that do support them. In fact,
most of the source code examples in this manual will pass NULL instead of passing a
pointer to an option list. Omitting the option list from the Silo function call in this way is
not harmful; it only means that certain pieces of additional metadata will not be stored
with the data.

Option lists are created using the DBMakeOptlist function. Once an option list object
is created, you can add options to it using the DBAddOption function. Option lists are
freed using the DBFreeOptlist function.

4.6.1 Cycle and time

We’ve established that a notion of time can be encoded into filenames using ranges of
numbers in each filename. VisIt can use the numbers in the names of related files to guess
cycle number, a metric for how many times a simulation has iterated. It is possible to use
Silo’s option list feature to directly encode the cycle number and the simulation time into
the stored data.

Listing 2-6: optlist.c: C-Language example for saving cycle and time using an option list..

/* Create an option list to save cycle and time values. */
int cycle = 100;
double dtime = 1.23456789;
DBoptlist *optlist = DBMakeOptlist(2);
DBAddOption(optlist, DBOPT_DTIME, &time);
DBAddOption(optlist, DBOPT_CYCLE, &cycle);
/* Write a mesh using the option list. */
DBPutQuadmesh(dbfile, "quadmesh", coordnames, coords, dims, ndims,

DB_FLOAT, DB_COLLINEAR, optlist);
/* Free the option list. */
DBFreeOptlist(optlist);

Listing 2-7: foptlist.f: Fortran language example for saving cycle and time using an option list..

c Create an option list to save cycle and time values.
integer cycle /100/
double precision dtime /1.23456789/
integer err, ierr, optlistid
err = dbmkoptlist(2, optlistid)
Writing Silo files 19

Creating compatible files

err = dbaddiopt(optlistid, DBOPT_CYCLE, cycle)
err = dbadddopt(optlistid, DBOPT_DTIME, dtime)

c Write a mesh using the option list.
err = dbputqm (dbfile, "quadmesh", 8, "xc", 2,

. "yc", 2, "zc", 2, x, y, DB_F77NULL, dims, ndims,

. DB_FLOAT, DB_COLLINEAR, optlistid, ierr)
c Free the option list.

err = dbfreeoptlist(optlistid)

4.7 Writing a rectilinear mesh

A rectilinear mesh is a 2D or 3D mesh where all coordinates are aligned with the axes.
Each axis of the rectilinear mesh can have different, non-uniform spacing, allowing for
details to be concentrated in certain regions of the mesh. Rectlinear meshes are specified
by lists of coordinate values for each axis. Since the mesh is aligned to the axes, it is only
necessary to specify one set of X and Y values to generate all of the coordinates for the
entire mesh. Figure 2-8 contains an example of a 2D rectilinear mesh. The Silo function
call to write a rectlinear mesh is called DBPutQuadmesh.

X-coordinates

Y-coordinates

Figure 2-8: Rectilinear mesh and its X,Y node coordinates.
Writing Silo files 20

Creating compatible files
Listing 2-9: rect2d.c: C-Language example for writing a 2D rectilinear mesh.

/* Write a rectilinear mesh. */
float x[] = {0., 1., 2.5, 5.};
float y[] = {0., 2., 2.25, 2.55, 5.};
int dims[] = {4, 5};
int ndims = 2;
float *coords[] = {x, y};
DBPutQuadmesh(dbfile, “quadmesh”, NULL, coords, dims, ndims,

DB_FLOAT, DB_COLLINEAR, NULL);

Listing 2-10: frect2d.f: Fortran language example for writing a 2D rectilinear mesh.

c Write a rectilinear mesh
integer err, ierr, dims(2), ndims, NX, NY
parameter (NX = 4)
parameter (NY = 5)
real x(NX), y(NY)
data dims/NX, NY/
data x/0., 1., 2.5, 5./
data y/0., 2., 2.25, 2.55, 5./
ndims = 2
err = dbputqm (dbfile, "quadmesh", 8, "xc", 2,

. "yc", 2, "zc", 2, x, y, DB_F77NULL, dims, ndims,

. DB_FLOAT, DB_COLLINEAR, DB_F77NULL, ierr)

The previous code examples demonstrate how to write out a 2D rectilinear mesh using
Silo’s DBPutQuadmesh function (called dbputqm in Fortran). There are three pieces of
important information passed to the DBPutQuadmesh function. The first important
piece information is the name of the mesh being created. The name that you choose will
be the name that you use when writing a variable to a Silo file and also the name that you
will see in VisIt’s plot menus when you want to create a Mesh plot in VisIt. After the
name, you provide the coordinate arrays that contain the X and Y point values that
ultimately form the set of X,Y coordinate pairs that describe the mesh. The C-interface to
Silo requires that you pass pointers to the coordinate arrays in a single pointer array. The
Fortran interface to Silo requires you to pass the names of the coordinate arrays, followed
by the actual coordinate arrays, with a value of DB_F77NULL for any arrays that you do
not use. The final critical pieces of information that must be passed to the
DBPutQuadmesh function are the dimensions of the mesh, which correspond to the
number of nodes, or coordinate values, along the mesh in a given dimension. The
dimensions are passed in an array, along with the number of dimensions, which must be 2
Writing Silo files 21

Creating compatible files
 or 3. Figure 2-11 shows an example of a 3D rectilinear mesh for the upcoming code
examples.

X-coordinates

Y-coordinates

Z-coordinates

Figure 2-11: Rectilinear mesh and its X,Y,Z coordinates

Listing 2-12: rect3d.c: C-Language example for writing a 3D rectilinear mesh.

/* Write a rectilinear mesh. */
float x[] = {0., 1., 2.5, 5.};
float y[] = {0., 2., 2.25, 2.55, 5.};
float z[] = {0., 1., 3.};
int dims[] = {4, 5, 3};
int ndims = 3;
float *coords[] = {x, y, z};
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

DB_FLOAT, DB_COLLINEAR, NULL);

Listing 2-13: frect3d.f: Fortran language example for writing a 3D rectilinear mesh.

integer err, ierr, dims(3), ndims, NX, NY, NZ
parameter (NX = 4)
parameter (NY = 5)
parameter (NZ = 3)
real x(NX), y(NY), z(NZ)
data x/0., 1., 2.5, 5./
Writing Silo files 22

Creating compatible files

data y/0., 2., 2.25, 2.55, 5./
data z/0., 1., 3./
ndims = 3
data dims/NX, NY, NZ/
err = dbputqm (dbfile, "quadmesh", 8, "xc", 2,

. "yc", 2, "zc", 2, x, y, z, dims, ndims,

. DB_FLOAT, DB_COLLINEAR, DB_F77NULL, ierr)

4.8 Writing a curvilinear mesh

A curvilinear mesh is similar to a rectlinear mesh. The main difference between the two
mesh types is how coordinates are specified. Recall that in a rectilinear mesh, the
coordinates are specified individually for each axis and only a small subset of the nodes in
the mesh are provided. The coordinate arrays are used to assemble a point for each node in
the mesh. In a curvilinear mesh, you must provide an X,Y,Z value for every node in the
mesh. Providing the coordinates for every point explicitly allows you to specify more
complex geometries than are possible using rectilinear meshes. Note how the mesh
coordinates on the mesh in Figure 2-14 allow it to assume shapes that are not aligned to
the coordinate axes.

Figure 2-14: Curvilinear mesh and its X,Y node coordinates

The fine line between a rectilinear mesh and a curvilinear mesh comes down to how the
coordinates are specified. Silo dicates that the coordinates be specified with an array of X-
Writing Silo files 23

Creating compatible files

coordinates, an array of Y-coordinates, and an optional array of Z-coordinates. The
difference, of course, is that in a curvilinear mesh, there are explicit values for each node’s
X,Y,Z points. Silo uses the same DBPutQuadmesh function to write out curvilinear
meshes. The coordinate arrays are passed the same as for the rectilinear mesh, though the
X,Y,Z arrays now point to larger arrays. You can pass the DB_NONCOLLINEAR flag to
the DBPutQuadmesh function in order to indicate that the coordinate arrays contain
values for every node in the mesh.

Listing 2-15: curv2d.c: C-Language example for writing a 2D curvilinear mesh.

/* Write a curvilinear mesh. */
#define NX 4
#define NY 3
float x[NY][NX] = {{0., 1., 3., 3.5}, {0., 1., 2.5, 3.5},

{0.7, 1.3, 2.3, 3.5}};
float y[NY][NX] = {{0., 0., 0., 0.}, {1.5, 1.5, 1.25, 1.5},

{3., 2.75, 2.75, 3.}};
int dims[] = {NX, NY};
int ndims = 2;
float *coords[] = {(float*)x, (float*)y};
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

DB_FLOAT, DB_NONCOLLINEAR, NULL);

Listing 2-16: fcurv2d.f: Fortran language example for writing a 2D curvilinear mesh.

c Write a curvilinear mesh.
integer err, ierr, dims(2), ndims, NX, NY
parameter (NX = 4)
parameter (NY = 3)
real x(NX,NY), y(NX,NY)
data x/0., 1., 3., 3.5,

. 0., 1., 2.5, 3.5,

. 0.7, 1.3, 2.3, 3.5/
data y/0., 0., 0., 0.,

. 1.5, 1.5, 1.25, 1.5,

. 3., 2.75, 2.75, 3./
ndims = 2
data dims/NX, NY/
err = dbputqm (dbfile, "quadmesh", 8, "xc", 2,

. "yc", 2, "zc", 2, x, y, DB_F77NULL, dims, ndims,

. DB_FLOAT, DB_NONCOLLINEAR, DB_F77NULL, ierr)

Figure 2-17 shows a simple 3D curvilinear mesh that is 1 cell thick in the Z-dimension.
The number of cells in a dimension is 1 less than the number of nodes in the same
dimension. As you increase the number of nodes in the Z-dimension, you must also add
Writing Silo files 24

Creating compatible files
more X and Y coordinate values because the X,Y,Z values for node coordinates must be
fully specified for a curvilinear mesh.

Figure 2-17: 3D Curvilinear mesh and its X,Y,Z coordinates

Listing 2-18: curv3d.c: C-Language example for writing a 3D curvilinear mesh.

/* Write a curvilinear mesh. */
#define NX 4
#define NY 3
#define NZ 2
float x[NZ][NY][NX] = {

{{0.,1.,2.,3.},{0.,1.,2.,3.}, {0.,1.,2.,3.}},
{{0.,1.,2.,3.},{0.,1.,2.,3.}, {0.,1.,2.,3.}}

};
float y[NZ][NY][NX] = {

{{0.5,0.,0.,0.5},{1.,1.,1.,1.}, {1.5,2.,2.,1.5}},
{{0.5,0.,0.,0.5},{1.,1.,1.,1.}, {1.5,2.,2.,1.5}}

};
float z[NZ][NY][NX] = {

{{0.,0.,0.,0.},{0.,0.,0.,0.},{0.,0.,0.,0.}},
{{1.,1.,1.,1.},{1.,1.,1.,1.},{1.,1.,1.,1.}}

};
int dims[] = {NX, NY, NZ};
int ndims = 3;
float *coords[] = {(float*)x, (float*)y, (float*)z};
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,
Writing Silo files 25

Creating compatible files

DB_FLOAT, DB_NONCOLLINEAR, NULL);

Listing 2-19: fcurv3d.f: Fortran language example for writing a 3D curvilinear mesh.

c Write a curvilinear mesh
integer err, ierr, dims(3), ndims, NX, NY, NZ
parameter (NX = 4)
parameter (NY = 3)
parameter (NZ = 2)
real x(NX,NY,NZ), y(NX,NY,NZ), z(NX,NY,NZ)
data x/0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3.,

. 0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3./
data y/0.5,0.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5,

. 0.5,0.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5/
data z/0.,0.,0.,0., 0.,0.,0.,0., 0.,0.,0.,0,

. 1.,1.,1.,1., 1.,1.,1.,1., 1.,1.,1.,1./
ndims = 3
data dims/NX, NY, NZ/
err = dbputqm (dbfile, "quadmesh", 8, "xc", 2,

. "yc", 2, "zc", 2, x, y, z, dims, ndims,

. DB_FLOAT, DB_NONCOLLINEAR, DB_F77NULL, ierr)

4.9 Writing a point mesh

A point mesh is a set of 2D or 3D points where the nodes also constitute the cells in the
mesh. Silo provides the DBPutPointmesh function so you can write out particle
systems represented as point meshes.

Figure 2-20: 2D point mesh
Writing Silo files 26

Creating compatible files
Listing 2-21: point2d.c: C-Language example for writing a 2D point mesh.

/* Create some points to save. */
#define NPTS 100
int i, ndims = 2;
float x[NPTS], y[NPTS];
float *coords[] = {(float*)x, (float*)y};
for(i = 0; i < NPTS; ++i)
{

float t = ((float)i) / ((float)(NPTS-1));
float angle = 3.14159 * 10. * t;
x[i] = t * cos(angle);
y[i] = t * sin(angle);

}
/* Write a point mesh. */
DBPutPointmesh(dbfile, "pointmesh", ndims, coords, NPTS,

DB_FLOAT, NULL);

Listing 2-22: fpoint2d.f: Fortran language example for writing a 2D point mesh.

c Create some points to save.
integer err, ierr, i, ndims, NPTS
parameter (NPTS = 100)
real x(NPTS), y(NPTS), t, angle
do 10000 i = 0,NPTS-1

t = float(i) / float(NPTS-1)
angle = 3.14159 * 10. * t
x(i+1) = t * cos(angle);
y(i+1) = t * sin(angle);

10000 continue
ndims = 2

c Write a point mesh.
err = dbputpm (dbfile, "pointmesh", 9, ndims, x, y,

. DB_F77NULL, NPTS, DB_FLOAT, DB_F77NULL, ierr)
Writing Silo files 27

Creating compatible files

Figure 2-23: 3D point mesh

Writing a 3D point mesh is very similar to writing a 2D point mesh with the exception that
for a 3D point mesh, you must specify a Z-coordinate. Figure 2-23 shows what happens
when we extend our 2D point mesh example into 3D.

Listing 2-24: point3d.c: C-Language example for writing a 3D point mesh.

/* Create some points to save. */
#define NPTS 100
int i, ndims = 3;
float x[NPTS], y[NPTS], z[NPTS];
float *coords[] = {(float*)x, (float*)y, (float*)z};
for(i = 0; i < NPTS; ++i)
{

float t = ((float)i) / ((float)(NPTS-1));
float angle = 3.14159 * 10. * t;
x[i] = t * cos(angle);
y[i] = t * sin(angle);
z[i] = t;

}
/* Write a point mesh. */
DBPutPointmesh(dbfile, "pointmesh", ndims, coords, NPTS,

DB_FLOAT, NULL);

Listing 2-25: fpoint3d.f: Fortran language example for writing a 3D point mesh.
Writing Silo files 28

Creating compatible files
c Create some points to save
integer err, ierr, i, ndims, NPTS
parameter (NPTS = 100)
real x(NPTS), y(NPTS), z(NPTS), t, angle
do 10000 i = 0,NPTS-1

t = float(i) / float(NPTS-1)
angle = 3.14159 * 10. * t
x(i+1) = t * cos(angle);
y(i+1) = t * sin(angle);
z(i+1) = t

10000 continue
ndims = 3

c Write a point mesh
err = dbputpm (dbfile, "pointmesh", 9, ndims, x, y, z,

. NPTS, DB_FLOAT, DB_F77NULL, ierr)

4.10 Writing an unstructured mesh

Unstructured meshes are collections of different types of zones and are useful because
they can represent more complex mesh geometries than structured meshes can. This
section explains the Silo functions that are used to write out an unstructured mesh.

Figure 2-26: 2D unstructured mesh composed of triangles and
quadrilaterals. The node numbers are labelled red and
the zone numbers are labelled blue.

Silo supports the creation of 2D unstructured meshes composed of triangles,
quadrilaterals, and polygonal cells. However, VisIt splits polygonal cells into triangles.
Unstructured meshes are specified in terms of a set of nodes and then a zone list consisting
Writing Silo files 29

Creating compatible files
of lists of nodes, called connectivity information, that make up the zones in the mesh.
When creating connectivity information, be sure that the nodes in your zones are specified
so that when you iterate over the nodes in the zone that a counter-clockwise pattern is
observed. Silo provides the DBPutZonelist function to store out the connectivity
information. The coordinates for the unstructured mesh itself is written out using the
DBPutUcdmesh function.

Listing 2-27: ucd2d.c: C-Language example for writing a 2D unstructured mesh.

/* Node coordinates */
float x[] = {0., 2., 5., 3., 5., 0., 2., 4., 5.};
float y[] = {0., 0., 0., 3., 3., 5., 5., 5., 5.};
float *coords[] = {x, y};
/* Connectivity */
int nodelist[] = {

2,4,7, /* tri zone 1 */
4,8,7, /* tri zone 2 */
1,2,7,6, /* quad zone 3 */
2,3,5,4, /* quad zone 4 */
4,5,9,8 /* quad zone 5 */

};
int lnodelist = sizeof(nodelist) / sizeof(int);
/* shape type 1 has 3 nodes (tri), shape type 2 is quad */
int shapesize[] = {3, 4};
/* We have 2 tris and 3 quads */
int shapecounts[] = {2, 3};
int nshapetypes = 2;
int nnodes = 9;
int nzones = 5;
int ndims = 2;
/* Write out connectivity information. */
DBPutZonelist(dbfile, "zonelist", nzones, ndims, nodelist, lnodelist,

1, shapesize, shapecounts, nshapetypes);
/* Write an unstructured mesh. */
DBPutUcdmesh(dbfile, "mesh", ndims, NULL, coords, nnodes, nzones,

"zonelist", NULL, DB_FLOAT, NULL);

Listing 2-28: fucd2d.f: Fortran language example for writing a 2D unstructured mesh.

integer err, ierr, ndims, nshapetypes, nnodes, nzones
c Node coordinates

real x(9) /0., 2., 5., 3., 5., 0., 2., 4., 5./
real y(9) /0., 0., 0., 3., 3., 5., 5., 5., 5./

c Connectivity
integer LNODELIST
parameter (LNODELIST = 18)
integer nodelist(LNODELIST) /2,4,7,

. 4,8,7,

. 1,2,7,6,

. 2,3,5,4,

. 4,5,9,8/
Writing Silo files 30

Creating compatible files

c Shape type 1 has 3 nodes (tri), shape type 2 is quad
integer shapesize(2) /3, 4/

c We have 2 tris and 3 quads
integer shapecounts(2) /2, 3/
nshapetypes = 2
nnodes = 9
nzones = 5
ndims = 2

c Write out connectivity information.
err = dbputzl(dbfile, "zonelist", 8, nzones, ndims, nodelist,

. LNODELIST, 1, shapesize, shapecounts, nshapetypes, ierr)
c Write an unstructured mesh

err = dbputum(dbfile, "mesh", 4, ndims, x, y, DB_F77NULL,
. "X", 1, "Y", 1, DB_F77NULL, 0, DB_FLOAT, nnodes, nzones,
. "zonelist", 8, DB_F77NULL, 0, DB_F77NULL, ierr)

3D unstructured meshes are
4created much the same way as 2D

unstructured meshes are created.
The main difference is that
whereas in 2D, you use triangles
and quadrilateral zone types, in
3D, you use hexahedrons,
pyramids, prisms, and 1
tetrahedrons to compose your PyramidTetrahedron
mesh. The procedure for creating
the node coordinates is the same
with the exception that 3D meshes 4 7
also require a Z-coordinate. The 4 5
procedure for creating the zone list

0

5
(connectivity information) is the
same except that you specify cells

6

0 3
1using a larger number of nodes

because they are 3D. The order in
3 2which the nodes are specified is 1 2

also more important for 3D shapes Prism Hexahedron
because if the nodes are not given

Figure 2-29: Node ordering for Silo’s 3D unstructured zone in the right order, the zones can
types

become tangled. The proper zone
ordering for each of the four supported 3D zone shapes is shown in Figure 2-29.

0

32 2

3

10
Writing Silo files 31

Creating compatible files
 Figure 2-30 shows an example of a simple 3D unstructured mesh consisting of 2
hexahedrons, 1 pyramid, 1 prism, and 1 tetrahedron.

Figure 2-30: Node numbers on the left and the mesh, colored by zone type, on the right.
Hexhadrons (red), Pyramid (blue), Prism (yellow), Tetrahedron (green).

Listing 2-31: ucd3d.c: C-Language example for writing a 3D unstructured mesh.

/* Node coordinates */
float x[] = {0.,2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4.,4.};
float y[] = {0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,0.};
float z[] = {2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2.,0.};
float *coords[] = {x, y, z};
/* Connectivity */
int nodelist[] = {

1,2,3,4,5,6,7,8, /* hex, zone 1 */
5,6,7,8,9,10,11,12, /* hex, zone 2 */
9,10,11,12,13, /* pyramid, zone 3 */
2,3,16,15,6,7, /* prism, zone 4 */
2,15,14,6 /* tet, zone 5 */

};
int lnodelist = sizeof(nodelist) / sizeof(int);
/* shape type 1 has 8 nodes (hex) */
/* shape type 2 has 5 nodes (pyramid) */
/* shape type 3 has 6 nodes (prism) */
/* shape type 4 has 4 nodes (tet) */
int shapesize[] = {8,5,6,4};
/* We have 2 hex, 1 pyramid, 1 prism, 1 tet */
int shapecounts[] = {2,1,1,1};
int nshapetypes = 4;
int nnodes = 16;
int nzones = 5;
int ndims = 3;
/* Write out connectivity information. */
DBPutZonelist(dbfile, "zonelist", nzones, ndims, nodelist, lnodelist,
Writing Silo files 32

Creating compatible files
1, shapesize, shapecounts, nshapetypes);
/* Write an unstructured mesh. */
DBPutUcdmesh(dbfile, "mesh", ndims, NULL, coords, nnodes, nzones,

"zonelist", NULL, DB_FLOAT, NULL);

Listing 2-32: fucd3d.f: Fortran language example for writing a 3D unstructured mesh.

integer err, ierr, ndims, nzones
integer NSHAPETYPES, NNODES
parameter (NSHAPETYPES = 4)
parameter (NN = 16)

c Node coordinates
real x(NN) /0.,2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4.,4./
real y(NN) /0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,0./
real z(NN) /2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2.,0./

c Connectivity
integer LNODELIST
parameter (LNODELIST = 31)
integer nodelist(LNODELIST) /1,2,3,4,5,6,7,8,

. 5,6,7,8,9,10,11,12,

. 9,10,11,12,13,

. 2,3,16,15,6,7,

. 2,15,14,6/
c Shape type 1 has 8 nodes (hex)
c Shape type 2 has 5 nodes (pyramid)
c Shape type 3 has 6 nodes (prism)
c Shape type 4 has 4 nodes (tet)

integer shapesize(NSHAPETYPES) /8, 5, 6, 4/
c We have 2 hex, 1 pyramid, 1 prism, 1 tet

integer shapecounts(NSHAPETYPES) /2, 1, 1, 1/
nzones = 5
ndims = 3

c Write out connectivity information.
err = dbputzl(dbfile, "zonelist", 8, nzones, ndims, nodelist,

. LNODELIST, 1, shapesize, shapecounts, NSHAPETYPES, ierr)
c Write an unstructured mesh

err = dbputum(dbfile, "mesh", 4, ndims, x, y, z,
. "X", 1, "Y", 1, "Z", 1, DB_FLOAT, NN, nzones,
. "zonelist", 8, DB_F77NULL, 0, DB_F77NULL, ierr)
Writing Silo files 33

Creating compatible files

4.10.1 Adding axis labels and axis units

It is possible to add additional
annotations to your meshes
that you store to Silo files
using Silo’s option list
mechanism. This subsection
covers how to change the axis
titles and units that will be
used when VisIt plots your
mesh. By default, VisIt uses
“X-Axis”, “Y-Axis”, and “Z-
Axis” when labelling the
coordinate axes. You can
override the default labels
using an option list. Option
lists are created with the
DBMakeOptlist function
and freed with the
DBFreeOptlist function.
All of the Silo functions for
writing meshes that we’ve
demonstrated so far can
accept option lists that contain custom axis labels and units. Refer to the Silo User’s
Manual for more information on addition options that can be passed via option lists.

Adding customized labels and units for a mesh by using option lists ensures that VisIt uses
your customized labels and units instead of the default values. Figure 2-33 shows how the
labels and units in the previous examples show up in VisIt’s visualization window.

Figure 2-33: Custom mesh labels and units along the X and Y axes

Listing 2-34: rect2d.c: C-Language example for associating new axis labels and units with a mesh.

/* Create an option list to contain labels and units. */
DBoptlist *optlist = DBMakeOptlist(4);
DBAddOption(optlist, DBOPT_XLABEL, (void *)"Pressure");
DBAddOption(optlist, DBOPT_XUNITS, (void *)"kP");
DBAddOption(optlist, DBOPT_YLABEL, (void *)"Temperature");
DBAddOption(optlist, DBOPT_YUNITS, (void *)"Degrees Celsius");
/* Write a quadmesh with an option list. */
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

DB_FLOAT, DB_COLLINEAR, optlist);
/* Free the option list. */
DBFreeOptlist(optlist);

Listing 2-35: frect2d.f: Fortran language example for associating new axis labels and units with a
mesh

c Create an option list to contain labels and units.
Writing Silo files 34

Creating compatible files

integer err, ierr, optlistid
err = dbmkoptlist(4, optlistid)
err = dbaddcopt(optlistid, DBOPT_XLABEL, "Pressure", 8)
err = dbaddcopt(optlistid, DBOPT_XUNITS, "kP", 2)
err = dbaddcopt(optlistid, DBOPT_YLABEL, "Temperature", 11)
err = dbaddcopt(optlistid, DBOPT_YUNITS, "Celsius", 7)

c Write a quadmesh with an option list.
err = dbputqm (dbfile, "quadmesh", 8, "xc", 2,

. "yc", 2, "zc", 2, x, y, DB_F77NULL, dims, ndims,

. DB_FLOAT, DB_COLLINEAR, optlistid, ierr)
c Free the option list

err = dbfreeoptlist(optlistid)

4.11 Writing a scalar variable

Silo provides several different functions for writing variables; one for each basic type of
mesh: quadmesh (rectilinear and curvilinear), unstructured mesh, and point mesh. Each of
these functions can be used to write either zone-centered or node-centered data. This
section concentrates on how to write scalar variables; vector and tensor variable
components can be written as scalar variables and reassembled into vectors and tensors
using expressions, covered on page 47. This section’s code examples use the rectilinear,
curvilinear, point, and unstructured meshes that have appeared in previous code examples.

4.11.1 Zone centering vs. Node centering

VisIt supports two types of variable centering: zone-centering and node-centering. A
variable’s centering indicates how its values are attached to the mesh on which the variable
is defined. When a variable is zone-centered, each zone is assigned a single value. If you
were to plot a zone-centered value in VisIt, each zone would be drawn using a uniform
color and picking anywhere in the zone would yield the same value. Arrays containing
values that are to be zone-centered on a mesh must contain the same number of elements
as there are zones in the mesh. Node-centered arrays, on the other hand, contain a value
for every node in the mesh. When you plot a node-centered value in VisIt, VisIt
Writing Silo files 35

Creating compatible files

interpolates the values from the nodes across the zone’s surface, usually producing a
smooth gradient of values across the zone.

Figure 2-36: Zone-centering (left) and Node-centering (right)

4.11.2 API Commonality

Each of the provided functions for writing scalar variables does have certain arguments in
common. For example, all of the functions must be provided the name of the variable to
write out. The name that you pick is the name that will appear in VisIt’s plot menus (see
Figure 2-37). Be careful when you pick your variable names because you should avoid
characters that include: punctuation marks, and spaces. Variable names should only
contain letters and numbers and they should begin with a letter. These guidelines are in
place to assure that your data files will have the utmost compatibility with VisIt’s
expression language, which is defined in the VisIt User’s Manual.

All variables must be defined on a mesh. If you examine the code examples in this section,
each Silo function that writes out a variable will be passed the name of the mesh on which
the variable is to be defined.

Each of the Silo function calls will accept a pointer to the array that contains the variable’s
data. The data can be stored in several internal formats: char, short, int, long,
float, and double. Since Silo’s variable writing functions use a pointer to pass the
data, you can pass a pointer that points to data in any of the mentioned types. In addition,
you must pass a flag that indicates to Silo the type of data stored in the array whose
address you’ve passed.
Writing Silo files 36

Creating compatible files

Most of the remaining arguments to Silo’s variable writing functions are specific to the
types of meshes on which the variable is defined so the rest of this section will provide
examples for writing out variables that are defined on various mesh types.

Figure 2-37: Variables in VisIt’s plot menus

4.11.3 Rectilinear and curvilinear meshes

Recall from sections “Writing a rectilinear mesh” on page 20 and “Writing a curvilinear
mesh” on page 23 that the procedure for creating rectilinear and curvilinear meshes was
similar and the chief difference between the two mesh types was in how their coordinates
were specified. While a rectilinear mesh’s coordinates could be specified quite compactly
as separate X,Y,Z arrays made up of unique values along a coordinate axis, the curvilinear
mesh required X,Y,Z coordinate arrays that contained the X,Y,Z values for every node in
the mesh. Regardless of how the coordinates were specified, both mesh types contain
(NX-1)*(NY-1)*(NZ-1) zones and NX*NY*NZ nodes. This means that the code to write
a variable on a rectilinear mesh will be identical to the code to write a zone-centered
variable on a curvilinear mesh! Silo provides the DBPutQuadvar1 function to write
scalar variables for both rectilinear and curvilinear meshes,
Writing Silo files 37

Creating compatible files
 Figure 2-38: Zone-centered variables. Clock-wise from upper left,
float, double-precision, integer, char

Listing 2-39: quadvar2d.c: C-Language example for writing zone-centered variables.

/* The data must be (NX-1) * (NY-1) since it is zonal. */
float var1[] = {

0., 1., 2.,
3., 4., 5.,
6., 7., 8.,
9., 10., 11.

};
double var2[] = {

0.00, 1.11, 2.22,
3.33, 4.44, 5.55,
6.66, 7.77, 8.88,
9.99, 10.1, 11.11

};
int var3[] = {

0, 1, 2,
3, 4, 5,
6, 7, 8,
9, 10, 11

};
char var4[] = {

0, 1, 2,
3, 4, 5,
Writing Silo files 38

Creating compatible files
6, 7, 8,
9, 10, 11

};
/* Note dims are 1 less than mesh’s dims in each dimension. */
int dims[]={3, 4};
int ndims = 2;
DBPutQuadvar1(dbfile, "var1", "quadmesh", var1, dims,

ndims, NULL, 0, DB_FLOAT, DB_ZONECENT, NULL);
/* Write a double-precision variable. */
DBPutQuadvar1(dbfile, "var2", "quadmesh", (float*)var2, dims,

ndims, NULL, 0, DB_DOUBLE, DB_ZONECENT, NULL);
/* Write an integer variable */
DBPutQuadvar1(dbfile, "var3", "quadmesh", (float*)var3, dims,

ndims, NULL, 0, DB_INT, DB_ZONECENT, NULL);
/* Write a char variable */
DBPutQuadvar1(dbfile, "var4", "quadmesh", (float*)var4, dims,

ndims, NULL, 0, DB_CHAR, DB_ZONECENT, NULL);

Listing 2-40: fquadvar2d.f: Fortran language example for writing zone-centered variables.

integer err, ierr, dims(2), ndims, NX, NY, ZX, ZY
parameter (NX = 4)
parameter (NY = 5)
parameter (ZX = NX-1)
parameter (ZY = NY-1)
real var1(ZX,ZY)
double precision var2(ZX,ZY)
integer var3(ZX,ZY)
character var4(ZX,ZY)
data var1/0., 1., 2.,

. 3., 4., 5.,

. 6., 7., 8.,

. 9., 10., 11./
data var2/0.,1.11,2.22,

. 3.33, 4.44, 5.55,

. 6.66, 7.77, 8.88,

. 9.99, 10.1, 11.11/
data var3/0,1,2,

. 3, 4, 5,

. 6, 7, 8,

. 9, 10, 11/
data var4/0,1,2,

. 3, 4, 5,

. 6, 7, 8,

. 9, 10, 11/
data dims/ZX, ZY/
ndims = 2
err = dbputqv1(dbfile, "var1", 4, "quadmesh", 8, var1, dims,

. ndims, DB_F77NULL, 0, DB_FLOAT, DB_ZONECENT, DB_F77NULL, ierr)
c Write a double-precision variable

err = dbputqv1(dbfile, "var2", 4, "quadmesh", 8, var2, dims,
. ndims, DB_F77NULL, 0, DB_DOUBLE, DB_ZONECENT,
. DB_F77NULL, ierr)
Writing Silo files 39

Creating compatible files

c Write an integer variable
err = dbputqv1(dbfile, "var3", 4, "quadmesh", 8, var3, dims,
. ndims, DB_F77NULL, 0, DB_INT, DB_ZONECENT, DB_F77NULL, ierr)

c Write a char variable
err = dbputqv1(dbfile, "var4", 4, "quadmesh", 8, var4, dims,

. ndims, DB_F77NULL, 0, DB_CHAR, DB_ZONECENT, DB_F77NULL, ierr)

Both of the previous code examples produce a data file with 4 different scalar arrays as
shown in Figure 2-38. Note that in both of the previous code examples, the same
DBPutQuadvar1 function (or dbputqv1 in Fortran) function was used to write out
data arrays of differing types.

The DBPutQuadvar1 function can also be used to write out node centered variables.
There are two differences that you must observe when writing a node-centered variable as
opposed to writing a zone-centered variable. First, the data array that you pass to the
DBPutQuadvar1 function must be larger by 1 in each of its dimensions and you must
pass DB_NODECENT instead of DB_ZONECENT.

Listing 2-41: quadvar2d.c: C-Language example for writing node-centered variables.

/* The data must be NX * NY since it is nodal. */
#define NX 4
#define NY 5
float nodal[] = {

0., 1., 2., 3.,
4., 5., 6., 7.,
8., 9., 10., 11.,
12., 13., 14., 15.,
16., 17., 18., 19.

};
/* Nodal variables have same #values as #nodes in mesh */
int dims[]={NX, NY};
int ndims = 2;
DBPutQuadvar1(dbfile, "nodal", "quadmesh", nodal, dims,

ndims, NULL, 0, DB_FLOAT, DB_NODECENT, NULL);

Listing 2-42: fquadvar2d.f: Fortran language example for writing node-centered variables.

c The data must be NX * NY since it is nodal.
integer err, ierr, dims(2), ndims, NX, NY
parameter (NX = 4)
parameter (NY = 5)
real nodal(NX, NY)
data dims/NX, NY/
data nodal/0., 1., 2., 3.,

. 4., 5., 6., 7.,

. 8., 9., 10., 11.,

. 12., 13., 14., 15.,

. 16., 17., 18., 19./
Writing Silo files 40

Creating compatible files

ndims = 2
c Nodal variables have same #values as #nodes in mesh

err = dbputqv1(dbfile, "nodal", 5, "quadmesh", 8, nodal,
. dims, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT,
. DB_F77NULL, ierr)

Writing variables to 3D curvilinear and rectilinear meshes follows the same basic rules as
writing variables for 2D meshes. For zone-centered variables, you must have (NX-
1)*(NY-1)*(NZ-1) data values and for node-centered variables, you must have
NX*NY*NZ data values. Figure 2-43 shows what the data values look like for the Silo
files produced by the examples to come.

Figure 2-43: Zone-centered variable in 3D and a node-centered variable in 3D (shown
with a partially transparent plot)

Listing 2-44: quadvar3d.c: C-Language example for writing variables on a 3D mesh.

#define NX 4
#define NY 3
#define NZ 2
/* Write a zone-centered variable. */
void write_zonecent_quadvar(DBfile *dbfile)
{

int i, dims[3], ndims = 3;
int ncells = (NX-1)*(NY-1)*(NZ-1);
float *data = (float *)malloc(sizeof(float)*ncells);
for(i = 0; i < ncells; ++i)

data[i] = (float)i;
dims[0] = NX-1; dims[1] = NY-1; dims[2] = NZ-1;
DBPutQuadvar1(dbfile, "zonal", "quadmesh", data, dims,

ndims, NULL, 0, DB_FLOAT, DB_ZONECENT, NULL);
free(data);

}
/* Write a node-centered variable. */
Writing Silo files 41

Creating compatible files
void write_nodecent_quadvar(DBfile *dbfile)
{

int i, dims[3], ndims = 3;
int nnodes = NX*NY*NZ;
float *data = (float *)malloc(sizeof(float)*nnodes);
for(i = 0; i < nnodes; ++i)

data[i] = (float)i;
dims[0] = NX; dims[1] = NY; dims[2] = NZ;
DBPutQuadvar1(dbfile, "nodal", "quadmesh", data, dims,

ndims, NULL, 0, DB_FLOAT, DB_NODECENT, NULL);
free(data);

}

Listing 2-45: fquadvar3d.f: Fortran language example for writing variables on a 3D mesh.

c Write a zone-centered variable.
subroutine write_zonecent_quadvar(dbfile)
implicit none
integer dbfile
include "silo.inc"
integer err, ierr, dims(3), ndims, i,j,k,index, ZX,ZY,ZZ
parameter (ZX = 3)
parameter (ZY = 2)
parameter (ZZ = 1)
integer zonal(ZX, ZY, ZZ)
data dims/ZX, ZY, ZZ/
index = 0
do 10020 k=1,ZZ
do 10010 j=1,ZY
do 10000 i=1,ZX

zonal(i,j,k) = index
index = index + 1

10000 continue
10010 continue
10020 continue

ndims = 3
err = dbputqv1(dbfile, "zonal", 5, "quadmesh", 8, zonal, dims,

. ndims, DB_F77NULL, 0, DB_INT, DB_ZONECENT, DB_F77NULL, ierr)
end

c Write a node-centered variable.
subroutine write_nodecent_quadvar(dbfile)
implicit none
integer dbfile
include "silo.inc"
integer err, ierr, dims(3), ndims, i,j,k,index, NZ, NY, NZ
parameter (NX = 4)
parameter (NY = 3)
parameter (NZ = 2)
real nodal(NX, NY, NZ)
data dims/NX, NY, NZ/
index = 0
do 20020 k=1,NZ
do 20010 j=1,NY
Writing Silo files 42

Creating compatible files
do 20000 i=1,NX
nodal(i,j,k) = float(index)
index = index + 1

20000 continue
20010 continue
20020 continue

ndims = 3
err = dbputqv1(dbfile, "nodal", 5, "quadmesh", 8, nodal, dims,

. ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL, ierr)
end

4.11.4 Point meshes

Point meshes, which were meshes composed of a set of points can, like other mesh types,
have values associated with each point. Silo provides the DBPutPointVar1 function
that you can use to write out a scalar variable stored on a point mesh. Nodes and the zones
are really the same thing in a point mesh so you can consider zone-centered scalars to be
the same thing as node-centered scalars.

Figure 2-46: Scalar variable defined on a point mesh

Listing 2-47: pointvar3d.c: C-Language example for writing variables on a 3D point mesh.

/* Create some values to save. */
int i;
float var[NPTS];
Writing Silo files 43

Creating compatible files
for(i = 0; i < NPTS; ++i)
var[i] = (float)i;

/* Write the point variable. */
DBPutPointvar1(dbfile, "pointvar", "pointmesh", var, NPTS,

DB_FLOAT, NULL);

Listing 2-48: fpointvar3d.f: Fortran language example for writing variables on a 3D point mesh.

c Create some values to save.
integer err, ierr, i, NPTS
parameter (NPTS = 100)
real var(NPTS)
do 10010 i = 1,NPTS

var(i) = float(i-1)
10010 continue
c Write the point variable

err = dbputpv1(dbfile, "pointvar", 8, "pointmesh", 9,
. var, NPTS, DB_FLOAT, DB_F77NULL, ierr)

4.11.5 Unstructured meshes

Figure 2-49: A 2D unstructured mesh with a zonal variable (left) and a nodal variable (right).

Writing a variable on an unstructured mesh is done following a procedure similar to that
for writing a variable on a point mesh. As with other mesh types, a scalar variable defined
on an unstructured grid can be zone-centered or node-centered. If the variable is zone-
centered then the data array required to store the variable on the unstructured mesh must
be a 1-D array with the same number of elements as the mesh has zones. If the variable to
be stored is node-centered then the array containing the variable must be a 1-D array with
the same number of elements as the mesh has nodes. Thinking of the data array as a 1-D
array simplifies indexing since the number used to identify a particular node is the same
Writing Silo files 44

Creating compatible files

index that would be used to access data in the variable array (assuming 0-origin in C and
1-origin in Fortran). Since the data array is always 1-D for an unstructured mesh, the code
to store variables on 2D and 3D unstructured meshes is identical. Figure 2-49 shows a 2D
unstructured mesh with both zonal and nodal variables. Silo provides the
DBPutUcdvar1 function for writing scalar variables on unstructured meshes.

Listing 2-50: ucdvar2d.c: C-Language example for writing variables on an unstructured mesh.

float nodal[] = {1.,2.,3.,4.,5.,6.,7.,8.,9.};
float zonal[] = {1.,2.,3.,4.,5.};
int nnodes = 9;
int nzones = 5;
/* Write a zone-centered variable. */
DBPutUcdvar1(dbfile, "zonal", "mesh", zonal, nzones, NULL, 0,

DB_FLOAT, DB_ZONECENT, NULL);
/* Write a node-centered variable. */
DBPutUcdvar1(dbfile, "nodal", "mesh", nodal, nnodes, NULL, 0,

DB_FLOAT, DB_NODECENT, NULL);

Listing 2-51: fucdvar2d.f: Fortran language example for writing variables on an unstructured mesh.

integer err, ierr, NNODES, NZONES
parameter (NNODES = 9)
parameter (NZONES = 5)
real nodal(NNODES) /1.,2.,3.,4.,5.,6.,7.,8.,9./
real zonal(NZONES) /1.,2.,3.,4.,5./

c Write a zone-centered variable.
err = dbputuv1(dbfile, "zonal", 5, "mesh", 4, zonal, NZONES,

. DB_F77NULL, 0, DB_FLOAT, DB_ZONECENT, DB_F77NULL, ierr)
c Write a node-centered variable.

err = dbputuv1(dbfile, "nodal", 5, "mesh", 4, nodal, NNODES,
. DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL, ierr)
Writing Silo files 45

Creating compatible files

4.11.6 Adding variable units

All of the examples for writing scalar variables presented so
far have focused on the basics of writing a variable array to a
Silo file. Silo’s option list mechanism allows a variable object
to be annotated with various extra information. In the case of
scalar variables, the option list passed to DBPutQuadvar1
and DBPutUcdvar1 can contain the units that describe the
variable being stored. Refer to the Silo User’s Manual for a
complete list of the options accepted by the
DBPutQuadvar1 and DBPutUcdvar1 functions. When a
scalar variable has associated units, the units appear in the
variable legend in VisIt’s visualization window (see Figure 2-

Figure 2-52: Plot legend
52). with units

If you want to add units to the variable that you write, you
must create an option list to pass to the function writing your variable. You may recall that
option lists are created with the DBMakeOptlist function and freed with the
DBFreeOptlist function. In order to add units to the option list, you must add the
DBOPT_UNITS option.

Listing 2-53: ucdvar2d.c: C-Language example for writing a variables with units.

/* Create an option list and add “g/cc” units to it. */
DBoptlist *optlist = DBMakeOptlist(1);
DBAddOption(optlist, DBOPT_UNITS, (void*)"g/cc");
/* Write a variable that has units. */
DBPutUcdvar1(dbfile, "zonal", "mesh", zonal, nzones, NULL, 0,

DB_FLOAT, DB_ZONECENT, optlist);
/* Free the option list. */
DBFreeOptlist(optlist);

Listing 2-54: fucdvar2d.f: Fortran language example for writing a variables with units.

c Create an option list and add “g/cc” units to it.
integer err, optlistid
err = dbmkoptlist(1, optlistid)
err = dbaddcopt(optlistid, DBOPT_UNITS, "g/cc", 4)

c Write a variable that has units.
err = dbputuv1(dbfile, "zonal", 5, "mesh", 4, zonal, NZONES,
. DB_F77NULL, 0, DB_FLOAT, DB_ZONECENT, optlistid, ierr)

c Free the option list.
err = dbfreeoptlist(optlistid)
Writing Silo files 46

Creating compatible files
4.12 Single precision vs. Double precision

After having written some variables to a Silo file, you’ve no doubt learned that you can
pass a pointer to data of many different representations and precisions (char, int, float,
double, etc.). When you pass data to a Silo function, you also must pass a flag that tells
Silo how to interpret the data stored in your data array. For example, if you have single
precision floating point data then you would tell Silo to traverse the data as such using the
DB_FLOAT type flag in the function call to DBPutQuadvar1. Many of the functions in
the Silo library require a type flag to indicate the type of data being passed to Silo. In fact,
even the functions to write mesh coordinates can accept different data types. This means
that you can use double-precision to specify your mesh coordinates, which can be
immensely useful when dealing with very large or very small objects.

Listing 2-55: C-Language example for writing a mesh with double-precision coordinates.

/* The x,y arrays contain double-precision coordinates. */
double x[NY][NX], y[NY][NX];
int dims[] = {NX, NY};
int ndims = 2;
/* Note that x,y pointers are cast to float to conform to API. */
float *coords[] = {(float*)x, (float*)y};
/* Tell Silo that the coordinate arrays are actually doubles. */
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

DB_DOUBLE, DB_NONCOLLINEAR, NULL);

4.13 Writing expressions

You can plot derived quantities in VisIt by creating expressions that involve variables from
your database. Sometimes, it is useful to include expression definitions in your Silo file so
they are available to VisIt without you first having to create them. Silo provides the
DBPutdefvars function so you can write your expressions to a Silo file. Expression
names should be valid VisIt expression names, as defined in the VisIt User’s Manual.
Likewise, the expression definitions should contain only expressions that are supported by
the VisIt expression language.

While VisIt’s expression language can be useful for calculating a multitude of expressions,
it can be particularly useful for grouping vector or tensor components into vector and
tensor variables. If you store vector or tensor components as scalar variables in your Silo
file then you can easily create expressions that assemble the components into real vector
or tensor variables without significantly increasing your file’s storage requirements.
Writing out vector and tensor variables as expressions involving scalar variables also
prevents you from having to use more complicated Silo functions in order to write out the
vector or tensor data.

Listing 2-56: defvars.c: C-Language example for writing out expression definitions.
Writing Silo files 47

Creating compatible files

/* Write some expressions to the Silo file. */
const char *names[] = {"velocity", "speed"};
const char *defs[] = {"{xc,yc,zc}", "magnitude(velocity)"};
int types[] = {DB_VARTYPE_VECTOR, DB_VARTYPE_SCALAR};
DBPutDefvars(dbfile, "defvars", 2, names, types, defs, NULL);

Listing 2-57: fdefvars.f: Fortran language example for writing out expression definitions.

integer err, ierr, types(2), lnames(2), ldefs(2)
integer numexpressions, oldlen

c Initialize some 20 character length strings
character*20 names(2) /’velocity ’,

. ’speed ’/
character*20 defs(2) /’{xc,yc,zc} ’,

. ’magnitude(velocity) ’/
c Store the length of each string

data lnames/8, 5/
data ldefs/10, 19/
data types/DB_VARTYPE_VECTOR, DB_VARTYPE_SCALAR/

c Set the maximum string length to 20 since that’s how long
c our strings are

oldlen = dbget2dstrlen()
err = dbset2dstrlen(20)

c Write out the expressions
numexpressions = 2
err = dbputdefvars(dbfile, "defvars", 7, numexpressions,

. names, lnames, types, defs, ldefs, DB_F77NULL, ierr)
c Restore the previous value for maximum string length

err = dbset2dstrlen(oldlen)

In the previous Fortran example for writing expressions, there are more functions involved
than just the dbputdefvars function. It is critical to set the maximum 2D string length
for strings in the Silo library, using the dbset2dstrlen function, so the Fortran
interface to Silo will be able to correctly traverse the string data passed to it from Fortran.
In the previous example, we used 20 characters for both the expression names and
definitions. We call dbset2dstrlen to set the maximum allowable 2d string length to
20 characters before we pass our arrays of 20 character strings to the dbputdefvars
function. In addition, we must also pass valid lengths for the expression name and
definition strings. The lengths should be at least 1 character long but no longer than the
maximum allowable string length, which we set to 20 characters in the example program.
Passing valid string lengths is important so the expressions that you save to your file do
not contain any extra characters, such as trailing spaces.

4.14 Creating a master file for parallel

When a parallel program saves out its data files, often the most efficient method of I/O is
for each processor to write its own piece of the simulation, or domain, to its own Silo file.
Writing Silo files 48

Creating compatible files

If each processor writes its own Silo file then no communication or synchronization must
take place to manage access to a shared file. However, once the simulation has completed,
there are many files and all of them are required to reconstitute the simulated object.
Plotting each domain file in VisIt would be very tedious so Silo provides functions to
create what is known as a “master file”, which is a top-level file that effectively unifies all
of the domain files into a whole. When you open a master file in VisIt and plot variables
out of it, all domains are plotted.

Master files contain what are known as multimeshes, multivars, and multimaterials. These
objects are lists of filenames that contain the appropriate domain variable. They also
contain some meta-information about each of the domains that helps VisIt perform better
in parallel. Strategies for using metadata to improve VisIt’s I/O performance will be
covered shortly.

4.14.1 Creating a multimesh

A multimesh is an object that unites smaller domain-sized meshes into a whole mesh. The
multimesh object contains a list of the filenames that contain a piece of the named mesh.
When you tell VisIt to plot a multimesh, VisIt reads the named mesh in all of the required
domain files and processes the mesh in each file, to produce the entire mesh.

Figure 2-58: Multimesh colored by its domain number

The following example, shown in Figure 2-58, uses the mesh from the 2D rectilinear mesh
example program and repeats it as 4 domains. Note that the mesh forming the domains is
translated in X and Y so that the edges are shared. In the given example, the meshes that
make up the entire mesh are stored in separate Silo files: multimesh.1, multimesh.2,
Writing Silo files 49

Creating compatible files

multimesh.3, and multimesh.4. The mesh and any data that may be defined on it is stored
in those files. Remember that storing pieces of a single mesh is commonplace when
parallel processes write their own file. Plotting each of the smaller files individually in
VisIt is not neccessary when a master file has been generated since plotting the multimesh
object from the master file will cause VisIt to plot each of its constituent meshes. The code
that will follow shows how to use Silo’s DBPutMultimesh function to write out a
multimesh object that reassembles meshes from many domain files into a whole mesh.

The list of meshes or items in a multi-object generally take the form: path:item where path
is the file system path to the item and item is the name of the object being referenced. Note
that the path may be specified as a relative or absolute path using names valid for the file
system containing the master file. However, we strongly recommend using only relative
paths so the master file does not reference directories that exist only on one file system.
Using relative paths makes the master files much more portable since they allow the data
files to be moved. The path may also refer to subdirectories within the file being
referenced since Silo files may contain directories that help to organize related data. The
following examples assume that the domain files will exist in the same directory as the
master file since the path includes only the names of the domain files.

Listing 2-59: multimesh.c: C-Language example for writing a multimesh.

void write_masterfile(void)
{

DBfile *dbfile = NULL;
char **meshnames = NULL;
int dom, nmesh = 4, *meshtypes = NULL;
/* Create the list of mesh names. */
meshnames = (char **)malloc(nmesh * sizeof(char *));
for(dom = 0; dom < nmesh; ++dom)
{

char tmp[100];
sprintf(tmp, "multimesh.%d:quadmesh", dom);
meshnames[dom] = strdup(tmp);

}
/* Create the list of mesh types. */
meshtypes = (int *)malloc(nmesh * sizeof(int));
for(dom = 0; dom < nmesh; ++dom)

meshtypes[dom] = DB_QUAD_RECT;
/* Open the Silo file */
dbfile = DBCreate("multimesh.root", DB_CLOBBER, DB_LOCAL,

"Master file", DB_HDF5);
/* Write the multimesh. */
DBPutMultimesh(dbfile, "quadmesh", nmesh, meshnames,

meshtypes, NULL);
/* Close the Silo file. */
DBClose(dbfile);
/* Free the memory*/
for(dom = 0; dom < nmesh; ++dom)

free(meshnames[dom]);
free(meshnames);
Writing Silo files 50

Creating compatible files
free(meshtypes);
}

Listing 2-60: fmultimesh.f: Fortran language example for writing a multimesh.

subroutine write_master()
implicit none
include "silo.inc"
integer err, ierr, dbfile, nmesh, oldlen
character*20 meshnames(4) /’multimesh.1:quadmesh’,

. ’multimesh.2:quadmesh’,

. ’multimesh.3:quadmesh’,

. ’multimesh.4:quadmesh’/
integer lmeshnames(4) /20,20,20,20/
integer meshtypes(4) /DB_QUAD_RECT, DB_QUAD_RECT,

. DB_QUAD_RECT, DB_QUAD_RECT/
c Create a new silo file

err = dbcreate("multimesh.root", 14, DB_CLOBBER, DB_LOCAL,
. "multimesh root", 14, DB_HDF5, dbfile)
if(dbfile.eq.-1) then

write (6,*) ’Could not create Silo file!\n’
return

endif
c Set the maximum string length to 20 since that’s how long our
c strings are

oldlen = dbget2dstrlen()
err = dbset2dstrlen(20)

c Write the multimesh object.
nmesh = 4
err = dbputmmesh(dbfile, "quadmesh", 8, nmesh, meshnames,

. lmeshnames, meshtypes, DB_F77NULL, ierr)
c Restore the previous value for maximum string length

err = dbset2dstrlen(oldlen)
c Close the Silo file

err = dbclose(dbfile)
end

Sometimes it can be advantageous to have each processor write its files to a unique
subdirectory (e.g. proc-0, proc-1, proc-2, ...). You can also choose for each processor to
write its files to a common directory so all files for a given time step are contained in a
single place (e.g. cycle0000, cycle0001, cycle0002, ...). Generally, you will want to tailor
your strategy to the strengths of your file system to spread the demands of writing files
across as many I/O nodes as possible in order to increase throughput. The organization
strategies mentioned so far are only suggestions and you will have to determine the
optimum method for storing domain files on your computer system. Moving your domain
files to subdirectories can make it easier to navigate your file system and can provide
benefits later such as VisIt not having to check permissions, etc on so many files. Code to
Writing Silo files 51

Creating compatible files
create the list of mesh names where each processor writes its data to a different
subdirectory that contains all files for a given time step might look like the following:

int cycle = 100;
for(dom = 0; dom < nmesh; ++dom)
{

char tmp[100];
sprintf(tmp, "proc-%d/multimesh.%04d:quadmesh", dom, cycle);
meshnames[dom] = strdup(tmp);

}

4.14.2 Creating a multivar

Figure 2-61: Multivar displayed on its multimesh

A multivar object is the variable equivalent of a multimesh object. Like the multimesh
object, a multivar object contains a list of filenames that make up the variable represented
by the multivar object. Silo provides the DBPutMultivar function for writing out
multivar objects.

Listing 2-62: multivar.c: C-Language example for writing a multivar.

void write_multivar(DBfile *dbfile)
{
Writing Silo files 52

Creating compatible files
char **varnames = NULL;
int dom, nvar = 4, *vartypes = NULL;
/* Create the list of var names. */
varnames = (char **)malloc(nvar * sizeof(char *));
for(dom = 0; dom < nvar; ++dom)
{

char tmp[100];
sprintf(tmp, "multivar.%d:var", dom);
varnames[dom] = strdup(tmp);

}
/* Create the list of var types. */
vartypes = (int *)malloc(nvar * sizeof(int));
for(dom = 0; dom < nvar; ++dom)

vartypes[dom] = DB_QUADVAR;
/* Write the multivar. */
DBPutMultivar(dbfile, "var", nvar, varnames, vartypes, NULL);
/* Free the memory*/
for(dom = 0; dom < nvar; ++dom)

free(varnames[dom]);
free(varnames);
free(vartypes);

}

Listing 2-63: fmultivar.f: Fortran language example for writing a multivar.

subroutine write_multivar(dbfile)
implicit none
include "silo.inc"
integer err, ierr, dbfile, nvar, oldlen
character*20 varnames(4) /’multivar.1:var ’,

. ’multivar.2:var ’,

. ’multivar.3:var ’,

. ’multivar.4:var ’/
integer lvarnames(4) /14,14,14,14/
integer vartypes(4) /DB_QUADVAR,DB_QUADVAR,

. DB_QUADVAR,DB_QUADVAR/
c Set the maximum string length to 20 since that’s how long
c our strings are

oldlen = dbget2dstrlen()
err = dbset2dstrlen(20)

c Write the multivar.
nvar = 4
err = dbputmvar(dbfile, "var", 3, nvar, varnames, lvarnames,

. vartypes, DB_F77NULL, ierr)
c Restore the previous value for maximum string length

err = dbset2dstrlen(oldlen)
end
Writing Silo files 53

Creating compatible files

4.14.3 EMPTY contributions

During the course of a calculation, sometimes only a subset of processors will contribute
data. This means that they will not write data files. When some processors do not write
data files, creating your multi-objects can become more complicated. Note that because of
how VisIt represents its domain subsets, etc, you will want to keep the number of
filenames in a multi-object equal to the number of processors that you are using (the
maximum number of domains that you will generate). If the length of the list varies over
time then VisIt’s subsetting controls may not behave as expected. To keep things simple, if
you have N processors that write N files, you will always want N entries in your multi-
objects. If a processor does not contribute any data, insert the “EMPTY” keyword into the
multi-object in place of the path and variable. The “EMPTY” keyword allows the size of
the multi-object to remain fixed over time even as the number of processors that contribute
data changes. Keeping the size of the multi-object fixed over time ensures that VisIt’s
subsetting controls will continue to function as expected. Note that if you use the
“EMPTY” keyword in a multivar object then the same entry in the multimesh object for
the variable must also contain the “EMPTY” keyword.

Listing 2-64: C-Language example using the EMPTY keyword.

/* Processors 3,4 did not contribute so use EMPTY. */
char *meshnames[] = {“proc-1/file000/mesh”, “proc-2/file000/mesh”,

“EMPTY”, “EMPTY”};
int meshtypes[] = {DB_QUAD_RECT, DB_QUAD_RECT,

DB_QUAD_RECT, DB_QUAD_RECT};
int nmesh = 4;
/* Write the multimesh. */
DBPutMultimesh(dbfile, "mesh", nmesh, meshnames, meshtypes, NULL);

5.0 Writing VTK files

VTK (Visualization Toolkit) files provide a simple, flexible way to import data into VisIt.
VTK files can be written in human-readable ASCII form or in binary form. VTK files may
also be created in the legacy VTK file format or in their newer XML-based format. The
human-readable ASCII form for legacy VTK files is described in the VTK File Formats
document found on the Web at http://public.kitware.com/VTK/pdf/file-formats.pdf. You
can create code in any language to write data to the VTK file format if you follow the
format guidelines in the VTK File Formats document.

In order to simplify the creation of legacy VTK files, which can be susceptible to
formatting mistakes, VisIt provides the visit_writer library. The visit_writer
library is implemented in C and can be called from the C, C++, and Python programming
languages. The visit_writer library provides a handful of easy-to-use functions for
producing VTK files. This section will show how to use the visit_writer library to
create VTK files that can be used to import data into VisIt.
Writing VTK files 54

Creating compatible files

5.1 Getting started with visit_writer

The visit_writer library is included in source code form in VisIt’s source code
distribution. The C-version of the library consists of 2 files called visit_writer.c and
visit_writer.h that are stored in the tools/writer directory of VisIt’s source code tree.

5.1.1 Using visit_writer in C programs

When you use the visit_writer library, you can include the visit_writer.c file directly
in the list of source files for your project. Source files that use functions from the
visit_writer library must include the visit_writer.h header file. The
visit_writer library has no external dependencies so no additional libraries are
required to link programs that use the visit_writer library, provided the visit_writer.c
source code file was included in the project.

5.1.2 Using visit_writer in Python programs

The Python version of the visit_writer library is implemented as a Python extension
module, which is a dynamically loaded executable file containing the visit_writer
functions. The compiled visit_writer extension module is not currently distributed
in VisIt’s binary distributions so you will have to build it before you can use it in your
Python programs. Fortunately, building the visit_writer module is easy if you allow
Python to build it for you. To begin, open a terminal window and cd into VisIt’s source
code tree and then into the tools/writer directory. Next, type the following Python code
into a file called setup.py:

from distutils.core import setup, Extension
module1 = Extension(’visit_writer’,

include_dirs= [’.’],
sources = [’visit_writer.c’, ’py_visit_writer.c’])

setup (name = ’visit_writer’,
version = ’1.0’,
description = ’This module lets us write VTK files.’,
ext_modules = [module1])

Once you have created the setup.py file, run the following command in your terminal
window to build the visit_writer Python extension module.

python setup.py build

Once Python builds the visit_writer extension module, you can install it by running
the following command:

python setup.py install

After the visit_writer module has been built and installed, it should be available
when you run Python. To test whether the module was successfully installed, run python
and type: import visit_writer at the Python prompt. If Python does not complain then the
module was successfully built and loaded. Whenever you want to use the visit_module in
Writing VTK files 55

Creating compatible files

your Python scripts, you must first issue the import visit_writer directive. If you
want to find out more information about a particular visit_writer function once
you’ve imported the visit_writer module, you can type: print
visit_writer.__doc__ to make Python print out the documentation string for the
visit_writer module.

5.2 Regular meshes with data

A regular mesh, or Cartesian mesh, is an implicit mesh in which all zones have the same
size and are axis-aligned (see Figure 2-65). Furthermore, in this context, all zones are
squares or cubes with a side length of 1. The extents are determined by the number of
zones in each dimension. A regular mesh is a type of rectilinear mesh where the zones are
not permitted to differ in size. The visit_writer library provides the
write_regular_mesh function for writing out regular meshes and data to VTK files.

Figure 2-65: Regular mesh with data created using
visit_writer

Listing 2-66: vwregmesh.c: C-Language example for writing a regular mesh with data.

#include <visit_writer.h>
#include <math.h>

int main(int argc, char *argv[])
{
#define NX 10
#define NY 20
Writing VTK files 56

Creating compatible files
#define NZ 30
int i,j,k, index = 0;
int dims[] = {NX, NY, NZ};
int nvars = 2;
int vardims[] = {1, 1};
int centering[] = {0, 1};
const char *varnames[] = {"zonal", "nodal"};
float zonal[NZ-1][NY-1][NX-1], nodal[NZ][NY][NX];
float *vars[] = {(float *)zonal, (float *)nodal};
/* Create zonal variable */
for(k = 0; k < NZ-1; ++k)

for(j = 0; j < NY-1; ++j)
for(i = 0; i < NX-1; ++i, ++index)

zonal[k][j][i] = (float)index;
/* Create nodal variable. */
for(k = 0; k < NZ; ++k)

for(j = 0; j < NY; ++j)
for(i = 0; i < NX; ++i)

nodal[k][j][i] = sqrt(i*i + j*j + k*k);
/* Use visit_writer to write a regular mesh with data. */
write_regular_mesh("vwregmesh.vtk", 0, dims, nvars, vardims,

centering, varnames, vars);
return 0;

}

Listing 2-67: vwregmesh.py: Python language example for writing a regular mesh with data.

import visit_writer, math
NX = 10
NY = 20
NZ = 30
Create a zonal variable
zonal = []
index = 0
for k in range(NZ-1):

for j in range(NY-1):
for i in range(NX-1):

zonal = zonal + [index]
index = index + 1

Create a nodal variable
nodal = []
for k in range(NZ):

for j in range(NY):
for i in range(NX):

nodal = nodal + [math.sqrt(i*i + j*j + k*k)]
Use visit_writer to write a regular mesh with data.
dims = (NX, NY, NZ)
vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))
visit_writer.WriteRegularMesh("vwregmesh2.vtk", 0, dims, vars)
Writing VTK files 57

Creating compatible files

5.3 Rectilinear meshes with data

Recall from “Writing a rectilinear mesh” on page 20 that a rectilinear mesh is a 2D or 3D
mesh where all coordinates are aligned with the axes and coordinates along each axis can
have different, non-uniform spacing. The visit_writer library provides the
write_rectilinear_mesh function for writing rectilinear meshes. The following
code examples will use the same 2D and 3D rectilinear meshes that were used for the Silo
examples.

Figure 2-68: 2D rectilinear mesh with zonal variable

Listing 2-69: vwrect2d.c: C-Language example for writing a rectilinear mesh with data.

#include <visit_writer.h>

int main(int argc, char *argv[])
{
#define NX 4
#define NY 5

/* Rectilinear mesh coordinates. */
float x[] = {0., 1., 2.5, 5.};
float y[] = {0., 2., 2.25, 2.55, 5.};
float z[] = {0.};
int dims[] = {NX, NY, 1};
int ndims = 2;
/* Zonal and Nodal variable data. */
float zonal[NY-1][NX-1], nodal[NY][NX];
Writing VTK files 58

Creating compatible files
/* Info about the variables to pass to visit_writer. */
int nvars = 2;
int vardims[] = {1, 1};
int centering[] = {0, 1};
const char *varnames[] = {"zonal", "nodal"};
float *vars[] = {(float*)zonal, (float*)nodal};

/* Create a zonal variable. */
int i,j,index = 0;
for(j = 0; j < NY-1; ++j)

for(i = 0; i < NX-1; ++i, ++index)
zonal[j][i] = (float)index;

/* Create a nodal variable. */
index = 0;
for(j = 0; j < NY; ++j)

for(i = 0; i < NX; ++i, ++index)
nodal[j][i] = (float)index;

/* Pass the data to visit_writer to write a VTK file.*/
write_rectilinear_mesh("vwrect2d.vtk", 0, dims, x, y, z, nvars,
vardims, centering, varnames, vars);

return 0;
}

Listing 2-70: vwrect2d.py: Python language example for writing a rectilinear mesh with data.

import visit_writer

NX = 4
NY = 5
x = (0., 1., 2.5, 5.)
y = (0., 2., 2.25, 2.55, 5.)
z = 0.

Create a zonal variable
zonal = []
index = 0
for j in range(NY-1):

for i in range(NX-1):
zonal = zonal + [index]
index = index + 1

Create a nodal variable
nodal = []
index = 0
for j in range(NY):

for i in range(NX):
nodal = nodal + [index]
index = index + 1
Writing VTK files 59

Creating compatible files

vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))
visit_writer.WriteRectilinearMesh("vwrect2d.vtk", 0, x, y, z, vars)

5.4 Curvilinear meshes with data

A curvilinear mesh is similar to a rectlinear mesh; the main difference between the two
mesh types is how coordinates are specified. Recall that in a rectilinear mesh, the
coordinates are specified individually for each axis and only a small subset of the nodes in
the mesh are provided. In a curvilinear mesh, you must provide an X,Y,Z value for every
node in the mesh. The visit_writer library provides the
write_curvilinear_mesh function to write out curvilinear meshes and any
variables defined on them. Figure 2-71 shows an example of a 3D curvilinear mesh with a
zonal variable.

Figure 2-71: 3D curvilinear mesh with zonal variable

Listing 2-72: vwcurv3d.c: C-Language example for writing a curvilinear mesh with data.

#include <visit_writer.h>

#define NX 4
#define NY 3
#define NZ 2

int main(int argc, char *argv[])
{
Writing VTK files 60

Creating compatible files
/* Curvilinear mesh points stored x0,y0,z0,x1,y1,z1,...*/
float pts[] = {0, 0.5, 0, 1, 0, 0, 2, 0, 0,

3, 0.5, 0, 0, 1, 0, 1, 1, 0,
2, 1, 0, 3, 1, 0, 0, 1.5, 0,
1, 2, 0, 2, 2, 0, 3, 1.5, 0,
0, 0.5, 1, 1, 0, 1, 2, 0, 1,
3, 0.5, 1, 0, 1, 1, 1, 1, 1,
2, 1, 1, 3, 1, 1, 0, 1.5, 1,
1, 2, 1, 2, 2, 1, 3, 1.5, 1

};
int dims[] = {NX, NY, NZ};
/* Zonal and nodal variable data. */
float zonal[NZ-1][NY-1][NX-1], nodal[NZ][NY][NX];
/* Info about the variables to pass to visit_writer. */
int nvars = 2;
int vardims[] = {1, 1};
int centering[] = {0, 1};
const char *varnames[] = {"zonal", "nodal"};
float *vars[] = {(float *)zonal, (float *)nodal};
int i,j,k, index = 0;

/* Create zonal variable */
for(k = 0; k < NZ-1; ++k)

for(j = 0; j < NY-1; ++j)
for(i = 0; i < NX-1; ++i, ++index)

zonal[k][j][i] = (float)index;

/* Create nodal variable. */
index = 0;
for(k = 0; k < NZ; ++k)

for(j = 0; j < NY; ++j)
for(i = 0; i < NX; ++i, ++index)

nodal[k][j][i] = index;

/* Pass the data to visit_writer to write a binary VTK file. */
write_curvilinear_mesh("vwcurv3d.vtk", 1, dims, pts, nvars,

vardims, centering, varnames, vars);

return 0;
}

Listing 2-73: vwcurv3d.py: Python language example for writing a curvilinear mesh with data.

import visit_writer

NX = 4
NY = 3
NZ = 2

Curvilinear mesh points stored x0,y0,z0,x1,y1,z1,...
pts = (0, 0.5, 0, 1, 0, 0, 2, 0, 0,

3, 0.5, 0, 0, 1, 0, 1, 1, 0,
Writing VTK files 61

Creating compatible files
2, 1, 0, 3, 1, 0, 0, 1.5, 0,
1, 2, 0, 2, 2, 0, 3, 1.5, 0,
0, 0.5, 1, 1, 0, 1, 2, 0, 1,
3, 0.5, 1, 0, 1, 1, 1, 1, 1,
2, 1, 1, 3, 1, 1, 0, 1.5, 1,
1, 2, 1, 2, 2, 1, 3, 1.5, 1)

Create a zonal variable
zonal = []
index = 0
for k in range(NZ-1):

for j in range(NY-1):
for i in range(NX-1):

zonal = zonal + [index]
index = index + 1

Create a nodal variable
nodal = []
index = 0
for k in range(NZ):

for j in range(NY):
for i in range(NX):

nodal = nodal + [index]
index = index + 1

Pass data to visit_writer to write a binary VTK file.
dims = (NX, NY, NZ)
vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))
visit_writer.WriteCurvilinearMesh("vwcurv3d.vtk", 0, dims, pts, vars)
Writing VTK files 62

Creating compatible files
5.5 Point meshes with data

A point mesh is a set of 2D or 3D points where the nodes also constitute the cells in the
mesh. The visit_writer library provides the write_point_mesh function to
write out point meshes and data to VTK files.

Figure 2-74: Point mesh with scalar data and vector data

Listing 2-75: vwpoint3d.c: C-Language example for writing a point mesh with data.

#include <visit_writer.h>

#define NPTS 100

int main(int argc, char *argv[])
{

/* Create some points and data to save. */
int i;
float pts[NPTS][3], data[NPTS];
int nvars = 2;
int vardims[] = {1, 3};
const char *varnames[] = {"data", "ptsvec"};
float *vars[] = {(float *)pts, data};

for(i = 0; i < NPTS; ++i)
{

/* Make a point. */
float t = ((float)i) / ((float)(NPTS-1));
float angle = 3.14159 * 10. * t;
Writing VTK files 63

Creating compatible files

pts[i][0] = t * cos(angle);
pts[i][1] = t * sin(angle);
pts[i][2] = t;
/* Make a scalar */
data[i] = t * cos(angle);

}

/* Pass the mesh and data to visit_writer. */
write_point_mesh("vwpoint3d.vtk", 1, NPTS, (float*)pts, nvars,

vardims, varnames, vars);

return 0;
}

Listing 2-76: vwpoint3d.py: Python language example for writing a point mesh with data.

import visit_writer, math
NPTS = 100
pts = []
data = []
for i in range(NPTS):

Make a point
t = float(i) / float(NPTS-1)
angle = 3.14159 * 10. * t
pts = pts + [t * math.cos(angle), t * math.sin(angle), t]
Make a scalar
data = data + [t * math.cos(angle)]

Pass the mesh and data to visit_writer.
vars = (("data", 1, 1, pts), ("ptsvec", 3, 1, pts))
visit_writer.WritePointMesh("vwpoint3d.vtk", 1, pts, vars)

5.6 Unstructured meshes with data

Unstructured meshes are collections of different types of zones and are useful because
they can represent more complex mesh geometries than the structured meshes can.
Unstructured meshes are specified using the cell types and node orderings listed in
“Writing an unstructured mesh” on page 29. This section explains how to use the
visit_writer library’s write_unstructured_mesh function to write out
unstructured meshes and data.
Writing VTK files 64

Creating compatible files
Figure 2-77: 2D unstructured mesh with zonal variable

Listing 2-78: vwrucd2d.c: C-Language example for writing an unstructured mesh with data.

#include <visit_writer.h>

int main(int argc, char *argv[])
{

/* Node coordinates */
int nnodes = 9;
int nzones = 5;
float pts[] = {0., 0., 0., 2., 0., 0., 5., 0., 0.,

3., 3., 0., 5., 3., 0., 0., 5., 0.,
2., 5., 0., 4., 5., 0., 5., 5., 0.};

/* Zone types */
int zonetypes[] = {VISIT_TRIANGLE, VISIT_TRIANGLE,

VISIT_QUAD, VISIT_QUAD, VISIT_QUAD};

/* Connectivity */
int connectivity[] = {

1,3,6, /* tri zone 1. */
3,7,6, /* tri zone 2. */
0.,1,6,5, /* quad zone 3. */
1,2,4,3, /* quad zone 4. */
3,4,8,7 /* quad zone 5. */

};
Writing VTK files 65

Creating compatible files
/* Data arrays */
float nodal[] = {1,2,3,4,5,6,7,8,9};
float zonal[] = {1,2,3,4,5};

/* Info about the variables we’re passing to visit_writer. */
int nvars = 2;
int vardims[] = {1, 1};
int centering[] = {0, 1};
const char *varnames[] = {"zonal", "nodal"};
float *vars[] = {zonal, nodal};

/* Pass the mesh and data to visit_writer. */
write_unstructured_mesh("vwucd2d.vtk", 1, nnodes, pts, nzones,

zonetypes, connectivity, nvars, vardims, centering,
varnames, vars);

return 0;
}

Listing 2-79: vwucd2d.py: Python language example for writing an unstructured mesh with data.

import visit_writer

Node coordinates
pts = (0., 0., 0., 2., 0., 0., 5., 0., 0.,

3., 3., 0., 5., 3., 0., 0., 5., 0.,
2., 5., 0., 4., 5., 0., 5., 5., 0.)

Connectivity
connectivity = (

(visit_writer.triangle, 1,3,6),
(visit_writer.triangle, 3,7,6),
(visit_writer.quad, 0,1,6,5),
(visit_writer.quad, 1,2,4,3),
(visit_writer.quad, 3,4,8,7)

)

Data arrays
nodal = (1,2,3,4,5,6,7,8,9)
zonal = (1,2,3,4,5)

Pass the data to visit_writer
vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))
visit_writer.WriteUnstructuredMesh("vwucd2d.vtk", 1, pts,

connectivity, vars)

5.7 Creating a master file for parallel (.visit file)

The visit_writer library creates legacy VTK files and the legacy VTK file format has
no mechanism for storing more than a single mesh. Furthermore, legacy VTK files have
Writing VTK files 66

Creating compatible files
no concept of a master file or of multi-objects like Silo uses to unite domains into a whole.
Fortunately, VisIt provides a construct called a .visit file that addresses this shortcoming.
A .visit file is a text file, ending with the “.visit” extension, that contains the names of
domain files that make up the whole. A .visit file can be created to group files for any file
format that VisIt can read. Your parallel program can still write individual VTK files and
you can create a .visit file before visualizing the files so VisIt knows to open all of the
relevant files as opposed to you creating plots of each individual file. The following code
example lists what a .visit file looks like if you have 4 VTK domain files that contain the
same variables and all of them are to be plotted at once.

!NBLOCKS 4
proc-0.vtk
proc-1.vtk
proc-2.vtk
proc-3.vtk

The .visit file can be used for indicating which VTK files are part of a time-varying
database in addition to indicating how to reassemble domain files into a whole. In the
previous example, there were 4 domain files and only 1 time step. If you want to have
more than 1 time step, just add more files to the list. The !NBLOCKS directive tells VisIt
that every block of 4 files are related in a single time step. If you had two time steps then
your .visit file might look like this:

!NBLOCKS 4
proc-0.0000.vtk
proc-1.0000.vtk
proc-2.0000.vtk
proc-3.0000.vtk
proc-0.0001.vtk
proc-1.0001.vtk
proc-2.0001.vtk
proc-3.0001.vtk
Writing VTK files 67

Creating compatible files
Writing VTK files 68

Chapter 3 Creating compatible files II
Advanced topics

1.0 Overview

This chapter elaborates on some of the advanced topics involved in creating files that VisIt
can read. Most applications should be able to write out all of their data using information
contained in the previous chapter. This chapter introduces advanced topics such as
incorporating metadata to accelerate VisIt’s performance as well as some less common
data representations. Many of the examples in this chapter use the Silo library, which was
introduced in the previous chapter. For more information on getting started with the Silo
library, see “Writing Silo files” on page 13.

2.0 Writing vector data

The components of vector data are often stored to files as individual scalar variables and
VisIt uses an expression to compose the scalars back into a vector field. If you use the Silo
library, you can always choose instead to store your vector data as a multi-component
variable. The previous chapter provided several examples that use the Silo library to write
scalar variables on rectilinear, curvilinear, point, and unstructured meshes. The functions
that were used to write the scalars were simplified forms of the functions that are used to
write vector data. The scalar functions that were used to write data for a specific mesh type
as well as the vector function equivalents are listed in the following table:

Mesh type Scalar function Vector function

Rectilinear mesh DBPutQuadvar1 DBPutQuadvar

Curvilinear mesh DBPutQuadvar1 DBPutQuadvar

Point mesh DBPutPointvar1 DBPutPointvar
Overview Getting Data into VisIt Manual 69

Creating compatible files II - Advanced topics

Mesh type Scalar function Vector function

Unstructured mesh DBPutUcdvar1 DBPutUcdvar

The differences between a scalar function and a vector function are small. In fact, the
argument lists for a scalar function and a vector function are nearly identical in the Silo
library’s C-Language interface. The chief difference is that the vector functions take two
additional arguments and the meaning of one existing argument is modified. The first new
argument is an integer indicating the number of components contained by the variable to
be written. The next difference is that you must pass an array of pointers to character
strings that represent the names of each individual component. Finally, the argument that
was used to pass the data to the DBPutQuadvar1 function, now in the DBPutQuadvar
function, accepts an array of pointers to the various arrays that contain the variable
components. For more complete information on each of the arguments to the functions
that Silo uses to write multi-component data, refer to the Silo User’s Manual.

Listing 3-1: vectorvar.c: C-Language example for writing vector data using Silo.

int i, dims[3], ndims = 3;
int nnodes = NX*NY*NZ;
float *comp[3];
char *varnames[] = {"nodal_comp0","nodal_comp1","nodal_comp2"};
comp[0] = (float *)malloc(sizeof(float)*nnodes);
comp[1] = (float *)malloc(sizeof(float)*nnodes);
comp[2] = (float *)malloc(sizeof(float)*nnodes);
for(i = 0; i < nnodes; ++i)
{

comp[0][i] = (float)i; /*vector component 0*/
comp[1][i] = (float)i; /*vector component 1*/
comp[2][i] = (float)i; /*vector component 2*/

}
dims[0] = NX; dims[1] = NY; dims[2] = NZ;
DBPutQuadvar(dbfile, "nodal", "quadmesh",

3, varnames, comp, dims,
ndims, NULL, 0, DB_FLOAT, DB_NODECENT, NULL);

free(comp[0]);
free(comp[1]);
free(comp[2]);

Silo’s Fortran interface does not provide functions to write out multi-component data such
as vectors. If you use the Fortran interface to Silo, you will have to write out the vector
components as separate scalar variables and then write an expression to your Silo file that
composes the components into a single vector variable.

Listing 3-2: fvectorvar.f: Fortran-Language example for writing vector data using Silo.

subroutine write_nodecent_quadvar(dbfile)
Writing vector data 70

Creating compatible files II - Advanced topics
implicit none
integer dbfile
include "silo.inc"
integer err, ierr, dims(3), ndims,i,j,k,index,NX,NY,NZ
parameter (NX = 4)
parameter (NY = 3)
parameter (NZ = 2)
real comp0(NX,NY,NZ), comp1(NX,NY,NZ), comp2(NX,NY,NZ)
data dims/NX,NY,NZ/
index = 0
do 20020 k=1,NZ
do 20010 j=1,NY
do 20000 i=1,NX

comp0(i,j,k) = float(index)
comp1(i,j,k) = float(index)
comp2(i,j,k) = float(index)
index = index + 1

20000 continue
20010 continue
20020 continue

ndims = 3
err = dbputqv1(dbfile, "n_comp0", 11, "quadmesh", 8, comp0,

. dims, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL,

. ierr)
err = dbputqv1(dbfile, "n_comp1", 11, "quadmesh", 8, comp1,

. dims, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL,

. ierr)
err = dbputqv1(dbfile, "n_comp2", 11, "quadmesh", 8, comp2,

. dims, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL,

. ierr)
end

subroutine write_defvars(dbfile)
implicit none
integer dbfile
include "silo.inc"
integer err, ierr, types(2), lnames(2), ldefs(2), oldlen
c Initialize some 20 character length strings
character*40 names(2) /’zonalvec ’,

. ’nodalvec ’/
character*40 defs(2) /’{z_comp0,z_comp1,z_comp2} ’,

. ’{n_comp0,n_comp1,n_comp2} ’/
c Store the length of each string

data lnames/8, 8/
data ldefs/37, 37/
data types/DB_VARTYPE_VECTOR, DB_VARTYPE_VECTOR/

c Set the maximum string length to 40 since that’s how long our
c strings are

oldlen = dbget2dstrlen()
err = dbset2dstrlen(40)

c Write out the expressions
err = dbputdefvars(dbfile, "defvars", 7, 2, names, lnames,

. types, defs, ldefs, DB_F77NULL, ierr)
c Restore the previous value for maximum string length
Writing vector data 71

Creating compatible files II - Advanced topics

err = dbset2dstrlen(oldlen)
end

3.0 Adding metadata for performance boosts

VisIt incorporates several performance boosting strategies that make use of metadata, if it
is available. Most of the metadata applies to increasing parallel performance by reducing
the amount of I/O and subsequent processing that is required. The I/O reductions are
realized by not reading in and processing domains that will contribute nothing to the final
image on the screen. In order to prevent domains from being read in, your multi-objects
must have associated metadata for each of the domains that they contain. When a Silo
multi-object contains metadata about all of its constituent domains, VisIt can make work-
saving decisions since it knows the properties of each domain without having to read in
the data for each domain.

This section explains how to add metadata to your Silo multi-objects using option lists.
Metadata attached to multi-objects allow VisIt to determine important data characteristics
such as data extents or the spatial extents of the mesh without having to first read and
process all domains. Such knowledge allows VisIt to restrict the number of domains that
are processed, thus reducing the amount of work and the time required to display images
on your screen.

3.1 Writing data extents

Providing data extents can help VisIt only read in and process those domains that will
contribute to the final image. Many types of plots and operators use data extents for each
domain, when they are provided, to perform a simple upfront test to determine if a domain
contains the values which will be used. If a domain is not needed then VisIt will not read
that domain because it is known beforehand that the domain does not contain the desired
value.

An example of a plot that uses data extents in order to save work is VisIt’s Contour plot.
The Contour plot creates contours (lines or surfaces where the data has the same value)
through a dataset. Consider the example shown in Figure 3-3, where the entire mesh and
scalar field are divided into four smaller domains where the data extents of each domain
are stored to the file so VisIt can perform optimizations. Before the Contour plot executes,
it tells VisIt the data values for which it will make contours. Suppose that that you wanted
to see the areas where the value in the scalar field are equal to 11.5. The Contour plot takes
that 11.5 contour value and compares it to the data extents for all of the domains to see
which domains will be needed. If a domain will not be needed then VisIt will make no
further effort to read the domain or process it, thus saving work and making the plot
appear on the screen faster than it could if the data extents were not available in the file
Adding metadata for performance boosts 72

Creating compatible files II - Advanced topics

metadata. In the above example, the value of 11.5 is only present in domain 3, which
means that the Contour plot will only return a result if it processes data from domain 3.

Domain 2

Min=5.0

Max=11.2

Domain 3

Min=7.1

Max=14.1

Domain 1

Min=0.0

Max=7.1

Domain 4

Min=5.0

Max=11.2

Figure 3-3: Example Mesh and Pseudocolor plots with the data extents for each domain of the Pseudocolor
plot’s scalar variable.

Only process domain 3 Contour plot in domain 3

Figure 3-4: Only process domain 3 (left) to yield the Contour plot of value 11.5 (right).

The other domains are not processed in this case because they do not contain the required
value of 11.5. After the comparisons have been made, VisIt knows which domains will
Writing data extents 73

Creating compatible files II - Advanced topics
have to be processed and it can divide the set of domains (just domain 3 in this case) that
will contribute to the visualization among processors so they can execute the plot and
return data to VisIt’s viewer where it can be displayed.

To add the data extents for each processor to the metadata using Silo, you must add the
data extents to the option list that you pass to the DBPutMultivar function call. Having
the data extents for each domain readily available in the Multivar object ensures that VisIt
will have enough information to determine which domains will be necessary for
operations such as Contour without having to read all of the data to determine which
domains contribute to the visualization. The data extents must be stored in a double
precision array that has enough entries to accommodate the min and max values for each
domain in the multivar object. The layout of the min and max values within that array are
as follows: min_dom1, max_dom1, min_dom2, max_dom2, ...,
min_domN, max_domN

Listing 3-5: dataextents.c: C-Language example for writing data extents using Silo.

const int two = 2;
double extents[NDOMAINS][2];
DBoptlist *optlist = NULL;
/* Calculate the per-domain data extents for this variable. */
/* Write the multivar. */
optlist = DBMakeOptlist(2);
DBAddOption(optlist, DBOPT_EXTENTS_SIZE, (void *)&two);
DBAddOption(optlist, DBOPT_EXTENTS, (void *)extents);
DBPutMultivar(dbfile, "var", nvar, varnames, vartypes, optlist);
DBFreeOptlist(optlist);

Listing 3-6: fdataextents.f: Fortran language example for writing data extents using Silo.

double precision extents(2,NDOMAINS)
integer err, optlist

c Calculate the per-domain data extents for this variable.
c Write the multivar.

err = dbmkoptlist(2, optlist)
err = dbaddiopt(optlist, DBOPT_EXTENTS_SIZE, 2)
err = dbadddopt(optlist, DBOPT_EXTENTS, extents)
err = dbputmvar(dbfile, "var", 3, nvar, varnames, lvarnames,

. vartypes, optlist, ierr)
err = dbfreeoptlist(optlist)
Writing data extents 74

Creating compatible files II - Advanced topics

3.2 Writing spatial extents

If you provide spatial extents for each domain in your database then VisIt can use that
information during spatial data reduction operations, such as slicing, to reduce the number
of domains that must be read from disk and processed.

Figure 3-7: Only the red domains need to be processed to compute the slice plane if spatial extents
are provided.

Spatial extents for a domain contain the minimum and maximum values of the coordinates
within that domain, also called the domain’s bounding box. The spatial extents must be
stored in a double precision array that has enough entries to accommodate the min and
max coordinate values for each domain in the multimesh object. The layout of the min and
max values within that array for 3D domains are as follows: xmin_dom1,
ymin_dom1, zmin_dom1, xmax_dom1, ymax_dom1, zmax_dom1, ...,
xmin_domN, ymin_domN, zmin_domN, xmax_domN, ymax_domN,
zmax_domN. In the event that you have 2D domains then you can omit the z-components
of the min and max values and tell Silo that there are 4 values per min/max tuple instead of
the 6 values required to specify min and max values for 3D domains.

Listing 3-8: spatialextents.c: C-Language example for writing 3D spatial extents using Silo.

const int six = 6;
double spatial_extents[NDOMAINS][6];
DBoptlist *optlist = NULL;
/* Calculate the per-domain spatial extents for this mesh. */
for(int i = 0; i < NDOMAINS; ++i)
{

spatial_extents[i][0] = xmin; /* xmin for i’th domain */
spatial_extents[i][1] = ymin; /* ymin for i’th domain */
spatial_extents[i][2] = zmin; /* zmin for i’th domain */
Writing spatial extents 75

Creating compatible files II - Advanced topics

spatial_extents[i][3] = xmin; /* xmax for i’th domain */
spatial_extents[i][4] = ymax; /* ymax for i’th domain */
spatial_extents[i][5] = zmax; /* zmax for i’th domain */

}
/* Write the multimesh. */
optlist = DBMakeOptlist(2);
DBAddOption(optlist, DBOPT_EXTENTS_SIZE, (void *)&six);
DBAddOption(optlist, DBOPT_EXTENTS, (void *)spatial_extents);
DBPutMultimesh(dbfile, "mesh", nmesh, meshnames, meshtypes, optlist);
DBFreeOptlist(optlist);

Listing 3-9: fspatialextents.f: Fortran language example for writing 3D spatial extents using Silo.

double precision spatial_extents(6,NDOMAINS)
integer optlist, err, dom

c Calculate the per-domain spatial extents for this mesh.
do 10000 dom=1,NDOMAINS

spatial_extents(1,dom) = xmin
spatial_extents(2,dom) = ymin
spatial_extents(3,dom) = zmin
spatial_extents(4,dom) = xmin
spatial_extents(5,dom) = ymax
spatial_extents(6,dom) = zmax

10000 continue
c Write the multimesh

err = dbmkoptlist(2, optlist)
err = dbaddiopt(optlist, DBOPT_EXTENTS_SIZE, 6)
err = dbadddopt(optlist, DBOPT_EXTENTS, spatial_extents)
err = dbputmmesh(dbfile, "quadmesh", 8, nmesh, meshnames,

. lmeshnames, meshtypes, optlist, ierr)
err = dbfreeoptlist(optlist)

4.0 Ghost zones

Ghost zones are zones external to a domain, which correspond to zones in an adjacent
domain. Ghost zones allow VisIt to ensure continuity between domains containing zone-
centered data, making surfaces such as Contour plots continuous across domain
boundaries instead of creating surfaces with ugly gaps at the domain boundaries. Ghost
zones also allow VisIt to remove internal surfaces from the visualized data for plots such
as Pseudocolor, which only wants to keep the surfaces that are external to the model.
Removing internal surfaces results in fewer primitives that must be rendered on the
graphics card and that increases interactivity with plots. See Figure 3-10 for examples of
the problems that ghost zones allow VisIt to fix.
Ghost zones 76

Creating compatible files II - Advanced topics
Without ghost zones With ghost zones

Without ghost zones With ghost zones

Figure 3-10: VisIt can use ghost zones to ensure continuity and to remove internal surfaces

Ghost zones can be stored into the database so VisIt can read them when the data is
visualized. Ghost zones can also be created on-the-fly for structured (rectilinear and
curvilinear) meshes if multimesh adjacency information is provided. This section will
show how to write ghost zones to the file. If you are interested in providing multimesh
adjacency information so you can write smaller files and so VisIt can automatically create
ghost zones then refer to the documentation for the DBPutMultimeshadj function in
the Silo User’s Guide.
Ghost zones 77

Creating compatible files II - Advanced topics

4.1 Writing ghost zones to your files

You can write ghost zones to your files using the Silo library or you can instead write a
multimesh adjacency object, covered in the Silo User’s Guide, that VisIt can use to
automatically create ghost zones. This section will cover how to use the Silo library to
store ghost zones explicitly in your files.

The first step in creating ghost zones is to add a layer of zones around the mesh in each
domain of your database where a domain boundary exists. Each zone in the layer of added
ghost zones must match the location and have the same data value as the zone in the
domain that it is meant to mirror in order for VisIt to be able to successfully use ghost
zones to remove domain decomposition artifacts. This means that you must change your
code for writing out meshes and variables so your meshes have an addition layer of zones
for each domain boundary that is internal to the model. Your variables must also contain
valid data values in the ghost zones since providing a domain with knowledge of the data
values of its neighboring domains is the entire point of adding ghost zones. Note that you
should not add ghost zones on the surface of a domain where the surface is external to the
model. When ghost zones are erroneously added to external surfaces of the model, VisIt
removes the external faces and this can cause plots to be invisible.

Domain 1 Domain 2

Domain boundaryGhost zones

Figure 3-11: The zones that are both red and green are real zones in one domain and ghost zones
in another.

Figure 3-11 shows two domains: domain1 (red) and domain2 (green). The boundary
between (blue) the two domains is the interface that would exist between the domains if
there were no ghost zones. When you add a layer of ghost zones, each domain intrudes a
Ghost zones 78

Creating compatible files II - Advanced topics
little into the other domain’s bounding box so the zones in one domain’s layer of ghost
zones match the zones in the other domain’s external layer of zones. Of course, domains
on both sides of the domain boundary have ghost zones to assure that the VisIt will know
the proper zone-centered data values whether it approaches the domain boundary from the
left or from the right. The first row of cells on either side of the domain boundary are ghost
zones. For example, if you look at the upper left zone containing the “G” for ghost zone,
the “G” is draw in the green part of the zone, while the red part of the zone contains no
“G”. This means that the zone in question is a zone in domain1, the red domain, but that
domain2 has a zone that exactly matches the location and values of the zone in the red
domain. The corresponding zone in domain2 is a ghost zone.

Listing 3-12: spatialextents.c: C-Language example for writing a 3D, domain-decomposed
rectilinear mesh without ghost zones.

/* Create each of the domain meshes. */
int dom = 0, xdom, ydom, zdom;
for(zdom = 0; zdom < NZDOMS; ++zdom)
for(ydom = 0; ydom < NYDOMS; ++ydom)
for(xdom = 0; xdom < NXDOMS; ++xdom, ++dom)
{

float xc[NX], yc[NY], zc[NZ];
float *coords[] = {xc, yc, zc};
int index = 0;
float xstart, xend, ystart, yend, zstart, zend;
int xzones, yzones, zzones, nzones;
int xnodes, ynodes, znodes;

/* Create a new directory. */
char dirname[100];
sprintf(dirname, "Domain%03d", dom);
DBMkDir(dbfile, dirname);
DBSetDir(dbfile, dirname);

/* Determine default start, end coordinates */
xstart = (float)xdom * XSIZE;
xend = (float)(xdom+1) * XSIZE;
xzones = NX-1;
ystart = (float)ydom * YSIZE;
yend = (float)(ydom+1) * YSIZE;
yzones = NY-1;
zstart = (float)zdom * ZSIZE;
zend = (float)(zdom+1) * ZSIZE;
zzones = NZ-1;

xnodes = xzones + 1;
ynodes = yzones + 1;
znodes = zzones + 1;

/* Create the mesh coordinates. */
for(i = 0; i < xnodes; ++i)
{
Ghost zones 79

Creating compatible files II - Advanced topics

float t = (float)i / (float)(xnodes-1);
xc[i] = (1.-t)*xstart + t*xend;

}
for(i = 0; i < ynodes; ++i)
{

float t = (float)i / (float)(ynodes-1);
yc[i] = (1.-t)*ystart + t*yend;

}
for(i = 0; i < znodes; ++i)
{

float t = (float)i / (float)(znodes-1);
zc[i] = (1.-t)*zstart + t*zend;

}
/* Write a rectilinear mesh. */
dims[0] = xnodes;
dims[1] = ynodes;
dims[2] = znodes;
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

DB_FLOAT, DB_COLLINEAR, NULL);

/* Go back to the top directory. */
DBSetDir(dbfile, "..");

}

Once you have changed your mesh-writing code to add a layer of ghost zones, where
appropriate, you must indicate that the extra layer of zones are ghost zones. If you use
Silo’s DBPutQuadmesh function to write your mesh, you can indicate which zones are
ghost zones by adding DBOPT_LO_OFFSET and DBOPT_HI_OFFSET to pass arrays
containing high and low zone index offsets in the option list. If you are adding ghost zones
to an unstructured mesh, you would instead adjust the lo_offset and hi_offset
arguments that you pass to the DBPutZonelist2 function. The next code listing shows
the additions made in order to support ghost zones in a domain-decomposed rectilinear
mesh. The additions are underlined.

Listing 3-13: ghostzonesinfile.c: C-Language example for writing a 3D, domain-decomposed
rectilinear mesh with ghost zones.

/* Determine the size of a zone. */
float cx, cy, cz;
cx = XSIZE / (float)(NX-1);
cy = YSIZE / (float)(NY-1);
cz = ZSIZE / (float)(NZ-1);
/* Create each of the domain meshes. */
int dom = 0, xdom, ydom, zdom;
for(zdom = 0; zdom < NZDOMS; ++zdom)
for(ydom = 0; ydom < NYDOMS; ++ydom)
for(xdom = 0; xdom < NXDOMS; ++xdom, ++dom)
{

float xc[NX], yc[NY], zc[NZ];
float *coords[] = {xc, yc, zc};
Ghost zones 80

Creating compatible files II - Advanced topics
int index = 0;
float xstart, xend, ystart, yend, zstart, zend;
int xzones, yzones, zzones, nzones;
int xnodes, ynodes, znodes;
int hi_offset[3], lo_offset[3];
DBoptlist *optlist = NULL;

/* Create a new directory. */
char dirname[100];
sprintf(dirname, "Domain%03d", dom);
DBMkDir(dbfile, dirname);
DBSetDir(dbfile, dirname);

/* Determine default start, end coordinates */
xstart = (float)xdom * XSIZE;
xend = (float)(xdom+1) * XSIZE;
xzones = NX-1;
ystart = (float)ydom * YSIZE;
yend = (float)(ydom+1) * YSIZE;
yzones = NY-1;
zstart = (float)zdom * ZSIZE;
zend = (float)(zdom+1) * ZSIZE;
zzones = NZ-1;

/* Set the starting hi/lo offsets. */
lo_offset[0] = 0;
lo_offset[1] = 0;
lo_offset[2] = 0;
hi_offset[0] = 0;
hi_offset[1] = 0;
hi_offset[2] = 0;

/* Adjust the start and end coordinates based on whether
* or not we have ghost zones.
*/
if(xdom > 0)
{

xstart -= cx;
lo_offset[0] = 1;
++xzones;

}
if(xdom < NXDOMS-1)
{

xend += cx;
hi_offset[0] = 1;
++xzones;

}
if(ydom > 0)
{

ystart -= cy;
lo_offset[1] = 1;
++yzones;

}
if(ydom < NYDOMS-1)
Ghost zones 81

Creating compatible files II - Advanced topics
{
yend += cy;
hi_offset[1] = 1;
++yzones;

}
if(zdom > 0)
{

zstart -= cz;
lo_offset[2] = 1;
++zzones;

}
if(zdom < NZDOMS-1)
{

zend += cz;
hi_offset[2] = 1;
++zzones;

}

xnodes = xzones + 1;
ynodes = yzones + 1;
znodes = zzones + 1;

/* Create the mesh coordinates. */
for(i = 0; i < xnodes; ++i)
{

float t = (float)i / (float)(xnodes-1);
xc[i] = (1.-t)*xstart + t*xend;

}
for(i = 0; i < ynodes; ++i)
{

float t = (float)i / (float)(ynodes-1);
yc[i] = (1.-t)*ystart + t*yend;

}
for(i = 0; i < znodes; ++i)
{

float t = (float)i / (float)(znodes-1);
zc[i] = (1.-t)*zstart + t*zend;

}
/* Write a rectilinear mesh. */
dims[0] = xnodes;
dims[1] = ynodes;
dims[2] = znodes;
optlist = DBMakeOptlist(2);
DBAddOption(optlist, DBOPT_HI_OFFSET, (void *)hi_offset);
DBAddOption(optlist, DBOPT_LO_OFFSET, (void *)lo_offset);
DBPutQuadmesh(dbfile, "quadmesh", NULL, coords, dims, ndims,

DB_FLOAT, DB_COLLINEAR, optlist);
DBFreeOptlist(optlist);

/* Go back to the top directory. */
DBSetDir(dbfile, "..");

}
Ghost zones 82

Creating compatible files II - Advanced topics
There are two changes to the code in the previous listing that allow it to write ghost zones.
First of all, the code calculates the size of a zone in the cx, cy, cz variables and then
uses those sizes along with the location of the domain within the model to determine
which domain surfaces will receive a layer of ghost zones. The layer of ghost zones is
added by altering the start and end locations of the coordinate arrays as well as
incrementing the number of zones and nodes in the dimensions that will have added ghost
zones. The knowledge of which surfaces get a layer of ghost zones is recorded in the
lo_offset and hi_offset arrays. By setting lo_offset[0] to 1, Silo knows that
the first layer of zones in the X dimension will all be ghost zones. Similarly, by setting
high_offset[0] to 1, Silo knows that the last layer of zones in the X dimension are
ghost zones. The lo_offset and hi_offset arrays are associated with the mesh by
adding them to the option list that is passed to the DBPutQuadmesh function. The
example program fghostzonesinfile.f demonstrates how to add ghost zones to a file using
Silo’s Fortran interface.

5.0 Materials

Many simulations use materials to define the composition of regions so the response of the
materials can be taken into account during the calculation. Materials are represented as a
list of integers with associated material names such as: “steel”. Each zone in the mesh gets
one or more material numbers to indicate its composition. When a zone has a single
material number, it is said to be a “clean zone”. When there is more than one material
number in a zone, it is said to be a “mixed zone”. When zones are mixed, they have a list
of material numbers and a list of volume fractions (floating point numbers that sum to one)
that indicate how much of each material is contained in a zone. VisIt provides the
FilledBoundary and Boundary plots for plotting materials and VisIt provides the Subset
window so you can selectively turn off certain materials.

Figure 3-14: A mesh with both clean and mixed material zones

Air

Membrane

Water
Materials 83

Creating compatible files II - Advanced topics
3 3 2 2 1 1

3 3 2 2 1 1

3 3
2

3
2

1

2

1

Material numbers

matlist

Zone numbers

8 9 10 11

4 5 6 7

0 1 2 3

The matlist array contains the material
number for clean zones or an index into
the mix arrays for mixed zones.
Assuming array indices begin at 1, a mix
array index is stored as the negative value
of the desired mix array index. The mix
arrays are 4 parallel arrays that contain
the material numbers, volume fractions,
zone numbers, and number of materials
for each mixed zone.

1:

2:

3:

1

1

2

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

mix_zone

2

5

5

6

6

9

9

10

10

10

11

11

1:

2:

3:

2

3

2

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

mix_mat

1

2

3

2

1

2

3

1

2

3

2

1

1:

2:

3:

0.75

0.25

0.1875

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

mix_vf

0.8125

0.625

0.375

0.4375

0.5625

0.3

0.7

0.2

0.4

0.4

0.45

0.55

1:

2:

3:

2

0

4

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

mix_next

0

6

0

8

0

10

0

12

13

0

15

0

zone 1

zone 10

3 -1 -3 1

3 -5 -7 1

3 -9 -11 -14

Figure 3-15: Mixed material example
84 Materials

Creating compatible files II - Advanced topics

The plot of the material object shown in Figure 3-14 and Figure 3-15 contains three
materials: “Water” (1), “Membrane” (2), and “Air” (3). Materials use a matlist array to
indicate which zone are clean and which are mixed. The matlist array is a zone-centered
array of integers that contain the material numbers for the materials in the zone. If a zone
has only one material then the matlist array entry for that zone will contain the
material number of the material that fills the zone. If a zone contains more than one
material then the matlist array entry for that zone will contain an index into the mixed
material arrays. Indices into the mixed material arrays are equal to the negative value of
the desired mixed material array entry. When creating your mixed material arrays, assume
that array indices for the mixed material arrays begin at 1. When you begin assigning
material information into the mixed material arrays, use one array index per material in the
mixed material zone. The index that you use for the beginning index for the next mixed
material zone is the current index minus the number of materials in the current zone. Study
the matlist array in Figure 3-15. The first mixed material zone is zone 1 and since it is
mixed, instead of containing a material number, the matlist array for zone 1 contains the
starting index into the mixed material arrays, or -1. If you negate the -1, you arrive at index
1, which is the starting index for zone 1 in the mixed material arrays. Since zone 1 will
contain two materials, we use indices 1 and 2 in the mixed material arrays to store
information for zone 1. The next available array for other zones wanting to add mixed
materials to the mixed material arrays is element 3. Thus, when zone 2, which is also a
mixed zone, needs to have its information added to the mixed material arrays, you store -3
into the matlist array to indicate that zone 2’s values begin at zone 3 in the mixed material
arrays.

The mixed material arrays are a set of 4 parallel arrays: mix_zone, mix_mat, mix_vf,
and mix_next. All of the arrays have the number of elements but that number varies
depending on how many mixed zones there are in the material object. The mix_zone
array contains the index of the zone that owns the material information for the current
array element. That is, if you examine element 14 in the mix_zone array, you will know
that element 14 in all of the mixed material arrays contain information about zone 11.

The mix_mat array contains the material numbers of the materials that occupy a zone.
Material numbers correspond to the names of materials (e.g. 1 = Water) and should begin
at 1 and increment from there. The range of material numbers used may contain gaps
without causing any problems in VisIt. However, if you create databases that have many
domains that vary over time, you’ll want to make sure that each domain has the same list
of materials at every time step. It is not necessary to use a material number in the
matlist array or in the mixed material arrays in order to include it in a material object.
Look at element 11 in the mix_mat array in Figure 3-15. Element 11 contains material 1,
element 12 contains material 2, and element 13 contains material 3. Since those three
material numbers are supposed to all be present in zone 10, they are all added to the
mix_mat array. The same array elements in the mix_vf array record the amount of each
material in zone 10. The values in the mix_vf array for zone 10 are: 0.2, 0.4, 0.4 and
those numbers mean that 20% of zone 10 is filled with material 1, 40% is filled with
material 2, and 40% is filled with material 3. Note that all of the numbers for a zone in the
mix_vf array must sum to 1., or 100%.
Materials 85

Creating compatible files II - Advanced topics

The mix_next array contains indices to the next element in the mixed material arrays
that contains values for the mixed material zone under consideration. The mix_next
array allows you to construct a linked-list of material numbers for a zone within the mixed
material arrays. This means that the information for one zone’s mixed materials could be
scattered through the mixed material arrays but in practice the mixed material information
for one zone is usually contiguous within the mixed material arrays. The mix_next
array contains the next index to use within the mixed material arrays or it contains a zero
to indicate that no more information for the zone is available.

To write materials to a Silo file, you use the DBPutMaterial function. The
DBPutMaterial function is covered in the Silo User’s Guide but it is worth noting here
that it can be called to write either mixed materials or clean materials. The examples so far
have illustrated the more complex case of writing out mixed materials. You can pass the
matlist array and the mixed material arrays to the DBPutMaterial function or, in
the case of writing clean materials, you can pass only the matlist array and NULL for
all of the mixed material arrays. Note that when you write clean materials, your matlist
array will contain only the numbers of valid materials. That is, the matlist array does
not contain any negative mixed material array indices when you write out clean material
objects.

Listing 3-16: mixedmaterials.c: C-Language example for writing mixed materials using Silo.

/* Material arrays */
int nmats = 2, mdims[2];
int matnos[] = {1,2,3};
char *matnames[] = {"Water", "Membrane", "Air"};
int matlist[] = {

3, -1, -3, 1,
3, -5, -7, 1,
3, -9, -11, -14

};
float mix_vf[] = {

0.75,0.25, 0.1875,0.8125,
0.625,0.375, 0.4375,0.56250,
0.3,0.7, 0.2,0.4,0.4, 0.45,0.55

};
int mix_zone[] = {

1,1, 2,2,
5,5, 6,6,
9,9, 10,10,10, 11,11

};
int mix_mat[] = {

2,3, 2,1,
2,3, 2,1,
2,3, 1,2,3, 2,1

};
int mix_next[] = {

2,0, 4,0,
6,0, 8,0,
10,0, 12,13,0, 15,0
86 Materials

Creating compatible files II - Advanced topics
};
int mixlen = 15;

/* Write out the material */
mdims[0] = NX-1;
mdims[1] = NY-1;
optlist = DBMakeOptlist(1);
DBAddOption(optlist, DBOPT_MATNAMES, matnames);
DBPutMaterial(dbfile, "mat", "quadmesh", nmats, matnos, matlist,

mdims, ndims, mix_next, mix_mat, mix_zone, mix_vf, mixlen,
DB_FLOAT, optlist);

DBFreeOptlist(optlist);

Listing 3-17: fmixedmaterials.f: Fortran language example for writing mixed materials using Silo.

subroutine write_mixedmaterial(dbfile)
implicit none
integer dbfile
include "silo.inc"
integer NX, NY
parameter (NX = 5)
parameter (NY = 4)
integer err, ierr, optlist, ndims, nmats, mixlen
integer mdims(2) /NX-1, NY-1/
integer matnos(3) /1,2,3/

integer matlist(12) /3, -1, -3, 1,
. 3, -5, -7, 1,
. 3, -9, -11, -14/

real mix_vf(15) /0.75,0.25, 0.1875,0.8125,
. 0.625,0.375, 0.4375,0.56250,
. 0.3,0.7, 0.2,0.4,0.4, 0.45,0.55/

integer mix_zone(15) /1,1, 2,2,
. 5,5, 6,6,
. 9,9, 10,10,10, 11,11/

integer mix_mat(15) /2,3, 2,1,
. 2,3, 2,1,
. 2,3, 1,2,3, 2,1/

integer mix_next(15) /2,0, 4,0,
. 6,0, 8,0,
. 10,0, 12,13,0, 15,0/

ndims = 2
nmats = 3
mixlen = 15

c Write out the material
err = dbputmat(dbfile, "mat", 3, "quadmesh", 8, nmats, matnos,

. matlist, mdims, ndims, mix_next, mix_mat, mix_zone, mix_vf,

. mixlen, DB_FLOAT, DB_F77NULL, ierr)
Materials 87

Creating compatible files II - Advanced topics
end
88 Materials

Chapter 4 Creating a database reader
plug-in
1.0 Overview

This chapter shows how to extend VisIt by writing a new database reader plug-in so you
can use VisIt to access data files that you have already generated. Writing a database
reader plug-in has several advantages over other approaches to importing data into VisIt
such as writing a conversion program. First of all, if VisIt can natively read your file
format then there is no need to convert files and consume extra disk space. Converting files
may not even be possible if the data files are prohibitively large. Secondly, plug-ins offer
the advantage of not having to alter a complex simulation code to write out data that VisIt
can read. New plug-ins are free to read the simulation code’s native file format. While
many approaches to importing data into VisIt require new, specialized, code, when you
write a database plug-in, the code that you write is external to your simulation and it is not
a convertor that you have to maintain. There is no doubt that there is some maintenance
involved in writing a database reader plug-in for VisIt but there is always the option of
contributing your plug-in back into the VisIt source code tree where the code maintenance
burden is shared among the developer community.

This chapter first reviews the VisIt architecture and describes where plug-ins fit into that
scheme. After plug-ins are discussed, the steps that you must follow in order to create a
plug-in are outlined. After covering the basics, you can dive into the section that covers
how to implement your plug-in. Finally, once you have a working plug-in, you can add
advanced features.

2.0 Structure of VisIt

VisIt is a parallel, distributed application that consists of four component processes that
work in tandem to produce your visualizations. The two components that you may already
Overview Getting Data into VisIt Manual 89

Creating a database reader plugin
be familiar with are the client and the viewer. VisIt has GUI, Python interface, and Java
clients that control the visualization operations performed by the viewer, which is the
central state repository and graphics rendering component. The other components, which
are not immediately visible, are the database server and the compute engine. The database
server (sometimes called the meta-data server) is responsible for browsing the file system
and letting you know which files can be opened. Once you decide on a file to open, the
database server attempts to open that file, loading an appropriate database reader plug-in
to do so. Once the database server has opened a file, it sends file metadata such as the list
of available variables to the client and the viewer. The compute engine comes into play
when you want to create a plot to process your data into a form that can be rendered on the
screen. The compute engine, like the database server, loads a plug-in to read a data file and
does the actual work of reading the problem-sized data from the file and translating it into
Visualization Toolkit (VTK) objects that VisIt can process. Once the data has been read, it
is fed through the visualization pipeline and returned to the viewer component where it
can be displayed.

GUI Viewer

Local computer

Remote computer

Parallel Compute Engine

Database server

Data

metadatametadata processed data

Figure 4-1: VisIt’s architecture
Structure of VisIt 90

Creating a database reader plugin

2.1 plug-ins

VisIt supports three types of plug-ins: plot plug-ins, operator plug-ins, and database reader
plug-ins. This chapter explores database reader plug-ins as a method of importing data
from new file formats into VisIt. A database reader plug-in is made of three shared
libraries, which are dynamically loaded by the appropriate VisIt components when data
from a file must be read. The VisIt components involved in reading data from a file are the
database server and the compute engine. Each database reader plug-in has a database
server component, a compute engine component, and an independent component, for a
total of three shared libraries (libM, libE, libI).

The independent plug-in component, or libI plug-in component, is a very lightweight
shared library containing little more than the name and version of a plug-in as well as the
file extensions that should be associated with it. When the database server and compute
engine initialize at runtime, one of their first actions is to scan VisIt’s plug-in directories
for available libI plug-ins and then load all of the libI plug-ins to assemble an internal
list of known plug-ins along with the table of file extensions for each file.

When VisIt needs to open a file, the filename is first passed to the database server, which
tries to extract a file extension from the end of the filename so an appropriate plug-in can
be selected from the list of available plug-ins. Once one or more matches are made, the
database factory object in the database server loads the libM plug-in component for the
first plug-in in the list of matching plug-ins. The libM plug-in component is the piece of
the plug-in used by the database server and it is used to read the metadata from the file in
question. If the plug-in cannot open the file then it should throw an exception to make the
database factory attempt to open the file using the next matching plug-in. If there are no
plug-ins that match the file’s file extension then a default database plug-in is used. If that
plug-in cannot open the file then VisIt issues an error message. Once the libM plug-in has
read the metadata from the file, that information is sent to the VisIt clients where it can be
used to populate variable menus, etc.

When you add a plot in VisIt and click the Draw button, the first step that the compute
engine takes to process your request is to open the file that contains the data. The
procedure for opening the file that contains the data in the compute engine is the same as
that for the database server. In fact, the same database factory code is used internally.
However, the database factory in the compute engine loads the libE plug-in component.
The libE and libM plug-in components are essentially the same except that, when
possible, database server plug-in components do less work. Both the libE and libM
plug-in components contain code to read a file’s metadata and both contain code to read
variables and create meshes. The difference between the two plug-in types is that the code
to read the variables and create meshes is only called from the libE plug-in component.
Structure of VisIt 91

Creating a database reader plugin
3.0 Starting your plug-in

Now that you know the basics of how VisIt uses database reader plug-ins in order to read
different types of files, it is time to begin your plug-in. This section explains the different
interfaces available for coding your plug-in and also covers the steps involved to create
your plug-in code skeleton and run it for the first time.

3.1 Picking a database reader plug-in interface

Database reader plug-ins have 4 possible interfaces, which affect how files are mapped to
plug-in file format objects. The 4 possible interfaces are shown in the table below:

SD MD

ST STSD - Single time state
per file and it contains
just 1 domain.

STMD - Single time state per
file but each file contains
multiple domains.

MT MTSD - Multiple time
states per file and each
file contains just 1
domain

MTMD - Multiple time
states per file and each file
contains multiple domains.

In order to pick which plug-in interface is most appropriate for your particular file format,
you must consider how your file format treats time and domains. If your file format
contains multiple time states in each file then you have an MT file format; otherwise you
have an ST file format. If your file format comes from a parallel simulation then you will
often have some type of domain decomposition, which breaks up the entire simulation into
smaller pieces called domains that are divided among processors. If your simulation has
domains and the domains are written to a single file then you have an MD file format;
otherwise, if your simulation processors wrote out their own files then you have an SD file
format. When you consider both how your file format deals with time and how it deals
with domains, you should be able to select which plug-in interface you will need when
you write your database reader plug-in.

3.2 Using XMLEdit

Once you pick which database interface you will use to write your database plug-in, the
next step is to use VisIt’s XMLEdit tool to get started with some interface definitions.
XMLEdit is a graphical application that lets you create an XML file that describes some of
the basic attributes for your database reader plug-in. The XML file contains information
such as the name of the plug-in, its version, which interface is used, the plug-in’s list of file
extensions, and any additional libraries or source code files that need to be included in the
plug-in in order to build it.
Starting your plugin 92

Creating a database reader plugin
To get started with building your plug-in, the first step is to create a source code directory
to contain all of the files that will be created to generate your plug-in. It is best that the
directory name be the name of your file format or the name of your simulation. Once you
have created a directory for your plug-in files, you can run VisIt’s XMLEdit program. To
start XMLEdit on UNIX systems where VisIt is installed, open a command window and
type xmledit. On Windows systems, XMLEdit should be available in the Start menu
under VisIt’s plug-in development options.

Figure 4-2: XMLEdit plug-in tab

Once XMLEdit is active you can see that it has a number of tabs that are devoted to
various aspects of plug-in development. Most of the tabs are used for developing plot and
operator plug-ins only so this section will focus on the actions that you need to take to
create your database reader plug-in. First of all, you must type the name of your plug-in
into the Name text field. The name should match the name of the source code directory
that you created - be sure that you pick a name that can be used inside of C++ class names
since the name is used to help generate the plug-in code skeleton that will form the basis
of your database reader plug-in. Next, type in a label into the Label text field. The label
for a database plug-in can contain a longer identifier that will be displayed when VisIt uses
your plug-in to read files. The label may contain spaces and punctuation. Next, enter the
version of your plug-in into the Version text field. The version for initial development
should be: 1.0. Now, choose Database from the Plugin type combo box to tell XMLEdit
that you want to build a database reader plug-in. Once you choose Database for your plug-
Starting your plugin 93

Creating a database reader plugin

in type, some additional options will become enabled. You can ignore these options for
now since they contain reasonable default values.

Figure 4-3: XMLEdit plug-in tab with plug-in name and type selected

The next step in creating your database plug-in using XMLEdit is to set the database type
to STSD, STMD, MTSD, MTMD by selecting one of those options from the Database
type combo box. Note that it is possible to instead choose to create a fully custom

Figure 4-4: XMLEdit plug-in tab with database type and extensions
selected
Starting your plugin 94

Creating a database reader plugin

database type but do not choose that option since most formats do not need that level of
customizeability. Once you have selected a database type for your plug-in, type in the list
of file formats that you want to associate with your plug-in. You can enter as many space-
delimited file extensions as you want.

The information that you entered is the minimum amount of information required to create
your database reader plug-in. Save your XMLEdit session to an XML file by selecting
Save from the File menu. Be sure to use the same name as you used for the directory
name that will contain your plug-in files and also be sure to save your XML file to that
directory. At this point, you can skip ahead to generating your plug-in code skeleton or
you can continue adding options to your XML file.

3.2.1 CMake options

VisIt uses cmake for its build system and for the build systems of its plugins. XMLEdit
contains controls on its CMake tab that allow you to add options to your XML file that
will influence how your plug-in code is built when you go to compile it. For example, the
CMake tab includes options that allow you to specify compiler options such as
CXXFLAGS, LDFLAGS, and LIBS.

Adding options to these fields can be particularly useful if your plug-in uses an external
library such as NETCDF or HDF5. If you are using a library that VisIt provides
(NETCDF, HDF5, CGNS, Silo, etc.) then you can use special predefined cmake variables
that VisIt’s build defines to locate those libraries. For example, you could use
${NETCDF_INCLUDE_DIR}, ${NETCDF_LIBRARY_DIR}, ${NETCDF_LIB} to
reference the include directory, library directory, and library name for the NETCDF
library. Just substitute another capitalized library name for NETCDF to use variables for
other I/O libraries. It is better to use these cmake variables for libraries that VisIt provides
to ensure that your plugin is linked against the right libraries.

If you are using a library that VisIt does not support, you can add the include file and
library file locations to ensure that the compiler will know where to look for your external
library when your plug-in is built. Be sure to use -I/path/to/include in the CXXFLAGS
when you want to add include directories for your plugin. Use -L/path/to/lib in the
LDFLAGS when you want to add link directories for your plugin. Finally, add the name
of the library (e.g. netcdf instead of -lnetcdf) in the LIBS when you need to link against
additional libraries.
Starting your plugin 95

Creating a database reader plugin

You can also add extra files to the libE and libM plug-ins by adding a list of files to the
Engine files and MDServer files text fields, respectively. If you change any of these
options, shown in Figure 4-5, be sure to save your XML file before quitting XMLEdit.

Figure 4-5: XMLEdit CMake tab with compiler options and additional
files specified.

3.3 Generating a plug-in code skeleton

Once you save your work from XMLEdit, you will find an XML file containing the
options that you provided in the directory where you store your plug-in files. VisIt
provides more XML tools to generate the necessary code skeleton for your plug-in. The
important tools when building a database plug-in are: xml2cmake, xml2info,
xml2plugin. The xml2plugin program is actually a script that automates calling the
required xml2* programs. In order to generate your plug-in code skeleton, open a
command window, go to the directory containing your XML file, and run xml2plugin.
On UNIX systems, the command that you will run is:

xml2plugin -clobber FILE.xml
Starting your plugin 96

Creating a database reader plugin

Be sure to replace FILE.xml with the name of your own XML file. Once you run the
xml2plugin program, if you look in your directory, you will see several new files.

Figure 4-6: Files generated by xml2plugin

For database reader plug-ins, there are essentially three classes of files that xml2plugin
creates. First of all, xml2plugin creates the plug-in code skeleton, which includes the
plug-in entry points that are used to load the plug-in dynamically at runtime. These files
have “Info” in their name and they are generated by the xml2info program. If you
change the name, version, or file extensions that your plug-in uses then you should re-run
xml2info instead of running xml2plugin. The next set of files are the AVT file
format source and header files. The AVT file format source code files are C++ source code
files that you will complete using new code to read your file format. Finally, xml2cmake,
created a CmakeLists.txt file that cmake can use to generate a build system for your plug-
in. If you run “cmake .” at the command prompt and you are on a UNIX system such as
Linux or MacOS X, cmake will generate a Makefile for your plug-in. In that case, all you
have to do in order to build your plug-in is type: make at the command prompt.

3.4 Building your plug-in

So far, we have created an XML file using the XMLEdit program and then used the XML
file with VisIt’s XML tools to generate plug-in source code. The static portions of the
generated source code is complete but there are still some pieces that you need to write
yourself in order to make VisIt read your data files. The automatically generated files that
are called avtXXXXFileFormat.C and avtXXXXFileFormat.h, where XXXX is the name of
your plug-in, are incomplete. These two AVT files contain a derived class of one of the
STSD, STMD, MTSD, MTMD file format classes that VisIt provides for reading different
file types. Your job is to fill in the missing code in the methods for the AVT classes so they
can read data from your file format and translate that data into VTK objects. By default,
the AVT files contain some messages in the source code like “YOU MUST IMPLEMENT
Starting your plugin 97

Creating a database reader plugin

THIS”, which are meant to prevent the source code from compiling and to call attention to
areas of the plug-in that you need to implement (See Figure 4-7).

Figure 4-7: Example of a “YOU MUST IMPLEMENT THIS” message

The first step in building a plug-in is to make sure that the automatically generated source
code compiles. Open the AVT files and look for instances of the “YOU MUST
IMPLEMENT THIS” message and, when you find them, write down a note of where they
appear. Comment out each of the messages in the C++ source code and add “return
0;” statements (See Figure 4-8). By commenting out the offending messages, the
automatically generated source code will compile when you attempt to compile the plug-
in. You will also have a list of some of the plug-in methods that you will have to write later
when you really begin developing your plug-in.

Once you have changed the AVT files so there are no stray messages about implementing
a plug-in feature, go back to your command terminal and type “cmake -
DCMAKE_BUILD_TYPE:STRING=Debug” so cmake will generate a build system for
your plug-in. The generated build system is most commonly a Makefile, allowing you to
use the make command for your system (commonly make or gmake). The make
command takes the automatically generated Makefile that was generated by cmake and
starts building your plug-in against the installed version of VisIt. If you encounter
compilation errors, such as syntax errors, then you most likely need to make further
changes to your AVT files before trying to build your plug-in. A good C++ language
reference can help you understand the types of errors that may be printed to your
command window in the event that you have not successfully changed the AVT files. If
your source code seems to compile but fails due to missing libraries such as NETCDF or
HDF5 then you can edit your XML file so it points to the right library installation
locations. Note that if you edit your XML file, you will need to regenerate the
CMakeLists.txt file using xml2cmake. It is also a good idea that you remove the
Starting your plugin 98

Creating a database reader plugin

CMakeCache.txt file before rerunning cmake if you have changed the path to any libraries
in your XML file.

Figure 4-8: Example of corrections made to a “YOU MUST
IMPLEMENT THIS” message needed to make the source
code compile

Once your plug-in is built, it will be stored in a platform-specific subdirectory of the
.visit directory in your home directory (~/.visit). If you type: find ~/.visit
-name “*.so” into your command window, you will be able to locate the libE,
libI, and libM files that make up your compiled plug-in (see Figure 4-9). If you
develop for MacOS X, you should substitute “*.dylib” for “*.so” in the previous
command because shared libraries on MacOS X have a “.dylib” file extension instead
of a “.so” file extension. Note that when a parallel compute engine is available in the
installed version of VisIt, you will get two libE plug-ins; one with a _ser suffix and one
with a _par suffix. The libE files that have a _ser suffix are loaded by the serial
compute engine and the _par libE file is loaded by the parallel compute engine and
may contain parallel function calls, such as calls to the MPI library.

When VisIt’s database server and compute engine execute, they look in your ~/.visit
directory for available plug-ins and load any that are available. This means that even if you
build plug-ins against the installed version of VisIt, it will still be able to find your private
plug-ins.

It is recommended that while you develop your plug-ins, you only install them in your
~/.visit directory so other VisIt users will not be affected. However, if you develop
your plug-in on MacOS X, you will have to make sure that your plug-ins are installed
publicly so that they can be loaded at runtime. You can also choose to install your plug-ins
publicly once you have completed development. To install plug-ins publicly, first remove
the files that were installed to your ~/.visit directory by typing the make clean
command in your command window. Next, re-run the xml2cmake program like this:
xml2cmake -public -clobber FILE.xml. Adding the -public argument on
Starting your plugin 99

Creating a database reader plugin
the command line causes make to install your plug-in files publicly so all VisIt users can
access them. Don’t forget to rerun cmake after running xml2cmake.

Figure 4-9: Files are created in the .visit directory when a plug-in is built.

3.5 Calling your plug-in for the first time

Figure 4-10: File Information window confirming use of your plug-in.

Once you have completed building your plug-in for the first time, all that you need to do is
run VisIt and try to open one of your files. When you open one of your files, the database
server should match the file extension of the file that you tried to open with the list of file
extensions that your plug-in accepts, causing your plug-in to be loaded and used for
opening the file. You can verify that VisIt used your plug-in by opening the File
Starting your plugin 100

Creating a database reader plugin
 Information window (see Figure 4-10) in the VisIt GUI and looking for the name of your
plug-in in the listed information.

Note that at this stage, the database server should be properly loading your database reader
plug-in but since no code to actually read your files has yet been added to the AVT source
code files, no plottable meshes or variables will be available.

4.0 Implementing your plug-in

Now that you have built a working plug-in framework, you are ready to begin adding code
to your plug-in that will make it capable of opening your file format, reading data, and
translating that data into VTK objects. This section explores the details of writing the AVT
code for your database reader plug-in, providing necessary background and then diving
into specific topics such as how to return data for a particular mesh type. Before starting,
remember that building a plug-in is an incremental process and you should proceed in
small steps, saving your work, building, and testing your plug-in each step of the way.

4.1 Required plug-in methods

Most of the code in a VisIt database plug-in is automatically generated and, for the most
part, the only code that you need to modify is the AVT code. The AVT code contains a
class definition and implementation for a derived type of the STSD, STMD, MTSD, or
MTMD file format classes and your job as a plug-in developer is to write the required
methods for your derived file format class so that VisIt can read your file. There are many
methods in the file format class interface that you can override to make your plug-in
perform specialized operations. The only methods that you absolutely must implement are
Implementing your plugin 101

Creating a database reader plugin

the PopulateDatabaseMetaData, GetMesh, GetVar, and GetVectorVar
methods. The purpose of each of these plug-in methods is listed in the following table.

Method Purpose

PopulateData- VisIt calls the PopulateDatabaseMetaData
baseMetaData method when file metadata is needed. File metadata

is returned in a pass-by-reference avtData-
baseMetaData object. File metadata consists of
the list of names of meshes, scalar variables, vector
variables, tensor variables, label variables, array
variables, expressions, cycles, and times contained in
the file. These lists of variables and meshes let VisIt
know the names of the objects that can be plotted
from your file. The metadata is used primarily to
populate the plot menus in the GUI and viewer com-
ponents. The PopulateDatabaseMetaData
method is called by both the libM and libE plug-
ins.

GetMesh VisIt calls the GetMesh method in a libE plug-in
when it needs to plot a mesh. This method is the first
method to return “problem-sized” data, meaning that
the mesh data can be as large as the data in your file.
The GetMesh method must return a mesh object in
the form of one of the VTK dataset objects
(vtkRectilinearGrid, vtkStruc-
turedGrid, vtkUnstructuredGrid,
vtkPolyData)

GetVar VisIt calls the GetVar method in a libE plug-in
when it needs to read a scalar variable. Like the
GetMesh method, this method returns “problem-
sized” data. GetVar reads data values from the file
format, possibly performing calculations to alter the
data, and stores the data into a derived type vtk-
DataArray object such as vtkFloatArray or
vtkDoubleArray. If your file format does not
need to return scalar data then you can leave the
“return 0;” implementation that you added in
order to get your plug-in to build.
Implementing your plugin 102

Creating a database reader plugin

Method Purpose

GetVectorVar VisIt calls the GetVectorVar method in a libE
plug-in when it needs to read a vector or tensor vari-
able. GetVectorVar performs the same function
as GetVar but returns vtkFloatArray or vtk-
DoubleArray objects that have more than one
value per tuple. A tuple is the equivalent of a value
associated with a zone or node but it can store more
than one value. If your file format does not need to
return scalar data then you can leave the “return
0;” implementation that you added in order to get
your plug-in to build.

4.2 Debugging your plug-in

Before beginning to write code for your plug-in, you should know a few techniques for
debugging your plug-in since debugging VisIt can be tricky because of its distributed
architecture.

4.2.1 Debugging logs

The first method debugging in VisIt is by using VisIt’s debug logs. When you run visit
on the command line, you can optionally add the -debug 5 arguments to make VisIt
write out debugging logs. The number of debugging logs can be 1, 2, 3, 4, or 5, with
debugging log 5 being the most detailed. When VisIt’s components are told to run with
debugging logs turned on, each component writes a set of debugging logs. For example,
the database server component will write A.mdserver.1.vlog,
A.mdserver.2.vlog,...,A.mdserver.5.vlog debugging logs if you pass -debug 5 on the
VisIt command line. Subsequent runs of VisIt will prepend ‘B’ then ‘C’, and so on. If you
don’t want that behavior, you may add -clobber_vlogs to VisIt’s command line
arguments. Since you are writing a database reader plug-in, you will want to look at the
A.mdserver*.vlog and A.engine*.vlog files since those components load your libM and
libE plug-ins.

The debugging logs will contain information written to them by the debugging statements
in VisIt’s source code. If you want to add debugging statements to your AVT code then
you can use the debug1, debug2, debug3, debug4, or debug5 streams as shown in
the next code listing.

Listing 4-11: debugstream.C: C++-Language example for using debug streams.

// NOTE - This code incomplete and is for example purposes only.

// Include this header for debug streams.
#include <DebugStream.h>
Implementing your plugin 103

Creating a database reader plugin

vtkDataSet *
avtXXXXFileFormat::GetMesh(const char *meshname)
{

// Write messages to different levels of the debug logs.
debug1 << "Hi from avtXXXXFileFormat::GetMesh" << endl;

debug4 << "Many database plug-ins prefer debug4" << endl;

debug5 << "Lots of detail from avtXXXXFileFormat::GetMesh"
<< endl;

return 0;
}

4.2.2 Dumping VTK objects to disk

In addition to the -debug argument, VisIt also supports a -dump argument. The -dump
argument tells VisIt’s compute engine to write VTK files containing the data for every
stage of the pipeline execution so you can view the changes to the data made by each AVT
filter. While this option is more useful when writing plots and operators, you can use it to
examine the data at the beginning of the pipeline since, at that stage, the data will contain
the VTK object that was created by your database reader plug-in.

When you run VisIt with the -dump argument, many VTK files will be created since the
data is saved at every stage in the execution of VisIt’s data processing pipeline. Each VTK
filename begins with a number indicating the order of the filter in the pipeline that saved
the data. The list of files created by using the -dump argument is shown in Figure 4-12.

Figure 4-12: Output of running with the -dump command line argument
Implementing your plugin 104

Creating a database reader plugin
4.3 Opening your file

When VisIt receives a list of files to open, it tries to determine which plug-in should be
loaded to access the data in those files. The match is performed by comparing the file
extension of the files against the known file extensions or patterns for all database reader
plug-ins. Each plug-in in the list of matches is loaded and VisIt creates instances of the
plug-in’s AVT file format classes that are then used to access the data in the files. If the
plugin’s file format classes can be successfully constructed then VisIt tries to get the file’s
metadata. It is very important that your file format’s constructor do as little work as
possible, and try at all costs to avoid opening the files. Remember, VisIt could be creating
a long list of your file format objects and opening the file in the constructor will really
slow down the process of opening a file. It is better to instead add a boolean
initialized member to your class and an Initialize method that reads the file to
check its contents. Then override the ActivateTimestep method for your file format
class and call your Initialize method from it. We make Initialize its own method so
we can call it from other methods such as GetMesh or GetVar just in case.

In the event that your Initialize method cannot open the file if the file is not the right type,
or if it contains errors, or if it cannot be accessed for some other reason, the constructor
must throw an InvalidDBTypeException exception. When the
InvalidDBTypeException exception is thrown, VisIt’s database factory catches the
exception and then tries to open the file with the next matching plug-in. This procedure
continues until the file is opened by a suitable plug-in or the file cannot be opened at all.

Listing 4-13: invaliddbtype.C: C++-Language example for identifying a file.

// NOTE - This code incomplete and is for example purposes only.

#include <InvalidDBTypeException.h>

avtXXXXFileFormat::avtXXXXFileFormat(const char *filename)
: avtSTSDFileFormat(filename)
{

initialized = false;
}

// Override this method in your reader
void
avtXXXXFileFormat::ActivateTimestep()
{

Initialize();
}

// Provide this method in your reader
void
avtXXXXFileFormat::Initialize())
{

if(!initialized)
Implementing your plugin 105

Creating a database reader plugin

{
bool okay = false;

// Open the file specified by the filename argument here using
// your file format API. See if the file has the right things in
// it. If so, set okay to true.
YOU MUST IMPLEMENT THIS

// If your file format API could not open the file then throw
// an exception.
if (!okay)
{

EXCEPTION1(InvalidDBTypeException,
"The file could not be opened");

}

initialized = true;
}

}

If your database reader plug-in uses a unique file extension then you have the option of
deferring any file opens until later when metadata is required. This is the preferred
approach because VisIt may create many instances of your file format class and doing less
work in the constructor makes opening files faster.

Once you decide whether your file format can defer opening a file or whether it must open
the file in the constructor, you can begin adding code to your AVT class. Since opening
files can be a costly operation, you might want to open a file and keep it open if you have a
random access file format. If you open a file in one method and want to keep the file open
so it is available to multiple plug-in methods, you will need to add a new class member to
your AVT class to contain the handle to your open file. If your file format consists of
sequential text then you might consider reading the file once and keeping the data in
memory in a format that you can conveniently translate into VTK objects. Both
approaches require the addition of a new class member - either a handle to the file or a
pointer to data that was read from the file.

4.4 Returning file metadata

Once your you have decided how your plug-in will manage access to the file that it must
read, the next step in writing your database reader plug-in is to implement the
PopulateDatabaseMetaData method. The PopulateDatabaseMetaData
method is called by VisIt’s database infrastructure when information about a file’s meshes
and variables must be obtained. The PopulateDatabaseMetaData method is
usually called only the first time that a file format’s metadata is being read, though some
time-varying formats can have time-varying metadata, which requires that
PopulateDatabaseMetaData is called each time VisIt requests data for a new time
state. However, most file formats call PopulateDatabaseMetaData once.
Implementing your plugin 106

Creating a database reader plugin

The PopulateDatabaseMetaData method arguments can vary, depending on
whether your file format is STSD, STMD, MTSD, or MTMD but in all cases the first
argument is an avtDatabaseMetaData object. The avtDatabaseMetaData
object is a class that is pervasively used in VisIt; it contains information about the files that
you plot such as the number of domains, times, meshes, and variables that the files can
provide. When you implement your plug-in’s PopulateDatabaseMetaData
method, you must populate the avtDatabaseMetaData object with the list of meshes
and variables, etc. that you want VisIt to be able to plot. You can hard-code a fixed list of
meshes and variables if your file format always contains the same entities or you can open
your file and provide a dynamic list of meshes and variables. This section covers how to
add meshes and various variable types to the avtDatabaseMetaData object so your
file format’s data will be exposed in VisIt. For a complete listing of the
avtDatabaseMetaData object’s methods, see the avtDatabaseMetaData.h header
file. It is worth noting that the following code examples create metadata objects and
manually add them to the metadata object instead of using convenience functions. This is
done because the convenience functions used in automatically generated plug-in code do
not provide support for less often used metadata settings such as units and labels.

4.4.1 Returning mesh metadata

In order for you to be able to plot any data from your file format, your database reader
plug-in must add at least one mesh to the avtDatabaseMetaData object that is passed
into the PopulateDatabaseMetaData method. Adding information about a mesh to
the avtDatabaseMetaData object is done by creating an avtMeshMetaData
object, populating its important members, and adding it to the
avtDatabaseMetaData. At a minimum, each mesh must have a name, spatial
dimension, topological dimension, and a mesh type. The mesh’s name is the identifier that
will be displayed in VisIt’s plot menus and it is also the name that will be passed later on
into the plug-in’s GetMesh method.

The spatial dimension attribute corresponds to how many dimensions are needed to
specify the coordinates for the points that make up your mesh. If your mesh exists in a 2D
plane then choose 2, otherwise choose 3. Note that when you create the points for your
mesh later in the GetMesh method, you will always create points that contain X,Y,Z
points.

The topological dimension attribute describes the number of logical dimensions used by
your mesh, regardless of the dimension of the space that it sits in. For example, you may
have a planar surface of triangles sitting in 3D space. Such a mesh would be topologically
2D even though it sits in 3D space. The rule of thumb that VisIt follows is that if your
Implementing your plugin 107

Creating a database reader plugin

mesh’s cells are points then you have a mesh that is topologically 0D, lines are 1D,
surfaces are 2D, and volumes are 3D. This point is illustrated in Figure 4-14.

Points, 0D Lines, 1D Polygons, 2D Polyhedra, 3D

Figure 4-14: Topological dimensions. One zone is highlighted blue.

Once you have set the other basic attributes for your mesh object, consider which type of
mesh you have. VisIt supports several different mesh types and the value that you provide
in the metadata allows VisIt to tailor how it applies filters that process your data. If you
have a mesh composed entirely of particles then choose AVT_POINT_MESH. If you have
a structured mesh where the coordinates are specified by small vectors of values for each
axis and the rest of the coordinates are implied then you probably have a rectilinear mesh
and you should choose AVT_RECTILINEAR_MESH. If you have a structured mesh and
every node has its own specific location in space then you probably have a curvilinear
mesh and you should choose AVT_CURVILINEAR_MESH. If you have a mesh for which
you specify a large list of nodes and then create cells using indices into that list of nodes
then you probably have an unstructured mesh and you should choose
AVT_UNSTRUCTURED_MESH for the mesh type. If you have a mesh that adaptively
refines then choose AVT_AMR_MESH. Finally, if your mesh is specified using shapes such
as cones and spheres that are unioned or differenced using boolean operations then you
have a constructive solid geometry mesh and you should choose AVT_CSG_MESH for
your mesh’s mesh type.

If your mesh consists of multiple domains then you will need to set the number of domains
into the numBlocks member of the avtMeshMetaData object. Remember that the
number of domains tells VisIt how many pieces make up your mesh and it is especially
important to specify this number if your plug-in is derived from an MD file format
interface. You may also choose to tell VisIt what the domains are called for your file
format. Some file formats use the word: “domains” while others use “brick” or “block”. If
you choose to set the name that VisIt uses for domains then that term will be used in parts
of VisIt’s GUI such as the Subset window. Set the blockPieceName member of the
avtMeshMetaData object to a suitable term that describes a domain in the context of
your simulation code. Alternatively, you can provide proper names by providing a vector
of strings containing the names by setting the blockNames member.
Implementing your plugin 108

Creating a database reader plugin
AVT_POINT_MESH AVT_RECTILINEAR_MESH AVT_CURVILINEAR_MESH

AVT_UNSTRUCTURED_MESH AVT_AMR_MESH

Figure 4-15: AVT mesh types (AVT_CSG_MESH not pictured).

Now that the most important attributes of the avtMeshMetaData object have been
specified, you can add extra information such as the names or units of the coordinate
dimensions. Once all attributes are set to your satisfaction, you must add the
avtMeshMetaData object to the avtDatabaseMetaData object.

Listing 4-16: meshmetadata.C: C++-Language example for returning mesh metadata.

// NOTE - This code incomplete and is for example purposes only.

void
avtXXXXFileFormat::PopulateDatabaseMetaData(avtDatabaseMetaData *md)
{

// Add a point mesh to the metadata. Note that this example will
// always expose a mesh called “particles” to VisIt. A real
// plug-in may want to read a list of meshes from the data
// file.
avtMeshMetaData *mmd = new avtMeshMetaData;
mmd->name = "particles";
mmd->spatialDimension = 3;
mmd->topologicalDimension = 0;
mmd->meshType = AVT_POINT_MESH;
mmd->numBlocks = 1;
md->Add(mmd);
Implementing your plugin 109

Creating a database reader plugin

// Add other objects to the metadata object.
}

4.4.2 Returning scalar metadata

Once you have exposed a mesh to VisIt by adding mesh metadata to the
avtDatabaseMetaData object, you can add scalar field metadata to the metadata. A
scalar field is a set of floating point values defined for all cells or nodes of a mesh. You can
expose as many scalar variables as you want on any number of meshes. The list of scalar
fields that a plug-in exposes is often determined by the data file being processed. Like
mesh metadata, scalar metadata requires a name so the scalar can be added to VisIt’s
menus. The name that you choose is the same name that later is passed to the GetVar
plug-in method. Once you select a name for your scalar variable, you must indicate the
name of the mesh on which the variable is defined by setting the meshName member of
the avtScalarMetaData object. Once you have set the name and meshName
members, you can set the centering member. The centering member of the
avtScalarMetaData object can be set to AVT_NODECENT or AVT_ZONECENT,
indicating that the data is defined on the nodes or at the zone centers, respectively. If you
want to indicate units that are associated with the scalar variable, set the hasUnits
member to true and set the units string to the appropriate unit names.

Listing 4-17: scalarmetadata.C: C++-Language example for returning scalar metadata.

// NOTE - This code incomplete and is for example purposes only.

void
avtXXXXFileFormat::PopulateDatabaseMetaData(avtDatabaseMetaData *md)
{

// Add a mesh called "mesh" to the metadata object.

// Add a scalar to the metadata. Note that this plug-in will
// always expose a scalar called "temperature" to VisIt. A real
// plug-in may want to read a list of scalars from the data
// file.
avtScalarMetaData *smd = new avtScalarMetaData;
smd->name = "temperature";
smd->meshName = "mesh";
smd->centering = AVT_ZONECENT;
smd->hasUnits = true;
smd->units = "Celsius";
md->Add(smd);

// Add other objects to the metadata object.
}
Implementing your plugin 110

Creating a database reader plugin
4.4.3 Returning vector metadata

The procedure for returning vector metadata is similar to that for returning scalar
metadata. In fact, if you change the object type that you create from
avtScalarMetaData to avtVectorMetaData then you are almost done. After
you set the basic vector metadata attributes, you must set the varDim member to 2 if you
have a 2-component vector or 3 if you have a 3-component vector.

Listing 4-18: vectormetadata.C: C++-Language example for returning vector metadata.

// NOTE - This code incomplete and is for example purposes only.

void
avtXXXXFileFormat::PopulateDatabaseMetaData(avtDatabaseMetaData *md)
{

// Add a mesh called "mesh" to the metadata object.

// Add a vector to the metadata. Note that this plug-in will
// always expose a vector called "velocity" to VisIt. A real
// plug-in may want to read a list of vectors from the data
// file.
avtVectorMetaData *vmd = new avtVectorMetaData;
vmd->name = "velocity";
vmd->meshName = "mesh";
vmd->centering = AVT_ZONECENT;
vmd->hasUnits = true;
vmd->units = "m/s";
vmd->varDim = 3;
md->Add(vmd);

// Add other objects to the metadata object.
}

4.4.4 Returning material metadata

Like the other types of mesh variables that we have seen so far, a material is defined on a
specific mesh. However, unlike the other variables types, materials can be used to name
regions of the mesh and can also be used by VisIt to break the mesh down into smaller
pieces that can be turned on and off using the Subset window. Material metadata is
stored in an avtMaterialMetaData object and it consists of: the name of the material
object, the mesh on which it is defined, the number of materials, and the names of the
materials. If you had a material called “mat1” defined on “mesh” and “mat1” was
composed of: “Steel”, “Wood”, “Glue”, and “Air” then the metadata object needed to
expose “mat1” to VisIt would look like the following code listing:

Listing 4-19: materialmetadata.C: C++-Language example for returning material metadata.
Implementing your plugin 111

Creating a database reader plugin

// NOTE - This code incomplete and is for example purposes only.

void
avtXXXXFileFormat::PopulateDatabaseMetaData(avtDatabaseMetaData *md)
{

// Add a mesh called "mesh" to the metadata object.

// Add a material to the metadata. Note that this plug-in will
// always expose a material called "mat1" to VisIt. A real
// plug-in may want to use from the data file to construct
// a material.
avtMaterialMetaData *matmd = new avtMaterialMetaData;
matmd->name = "mat1";
matmd->meshName = "mesh";
matmd->numMaterials = 4;
matmd->materialNames.push_back("Steel");
matmd->materialNames.push_back("Wood");
matmd->materialNames.push_back("Glue");
matmd->materialNames.push_back("Air");
md->Add(matmd);

// Add other objects to the metadata object.
}

4.4.5 Returning expressions

VisIt provides support for defining expressions to calculate new data based on the data in
your file. VisIt provides the Expression window in the GUI for managing expression
definitions. It can be convenient for users in certain fields, where custom expressions are
used frequently, to store the expression definitions directly in the file format or to encode
the custom expressions directly in the file metadata so they are always available when a
given file is visualized. VisIt’s avtDatabaseMetaData object can contain custom
expressions. Thus you can add custom expressions to the avtDatabaseMetaData
object inside of your database reader plug-in. Custom expressions are added to the
avtDatabaseMetaData object by creating Expression (defined in Expression.h)
objects and adding them by calling the avtDatabaseMetaData::AddExpression
method. The Expression object lets you provide the name and definition of an
expression as well as the expression’s expected return type (scalar, vector, tensor, etc.) and
whether the expression should be hidden from the user. Hidden expressions can be useful
if you build a complex expression that makes use of smaller sub-expressions that do not
need to be exposed in the VisIt user interface.

Listing 4-20: expressionmetadata.C: C++-Language example for returning expression metadata.

// NOTE - This code incomplete and is for example purposes only.

#include <Expression.h>
Implementing your plugin 112

Creating a database reader plugin

void
avtXXXXFileFormat::PopulateDatabaseMetaData(avtDatabaseMetaData *md)
{

// Add a mesh called "mesh" to the metadata object.

// Add scalars to the metadata object.

// Add expression definitions to the metadata object.
Expression *e0 = new Expression;
e0->SetName("speed");
e0->SetDefinition("{u,v,w}");
e0->SetType(Expression::VectorMeshVar);
e0->SetHidden(false);
md->AddExpression(e0);

Expression *e1 = new Expression;
e1->SetName("density");
e1->SetDefinition("mass/volume");
e1->SetType(Expression::ScalarMeshVar);
e1->SetHidden(false);
md->AddExpression(e1);

// Add other objects to the metadata object.
}

4.5 Returning a mesh

Once your database reader plug-in can successfully return metadata about one or more
meshes, you can proceed to implementing your plug-in’s GetMesh method. When you
make a plot in VisIt, the plot is set up using the file metadata returned by your plug-in.
When you click the Draw button in the VisIt GUI, it causes a series of requests that make
the compute engine load your libE plug-in and call its GetMesh method with the name
of the mesh being used by the plot as well as the time state and domain numbers (MT or
MD formats only).

A database reader plug-in’s job is to read relevant data from a file format and translate the
data into a VTK object that VisIt can process. The GetMesh method’s job is to read the
mesh information from the file and create a VTK object that describes the mesh in the data
file. VisIt can process many different mesh types (See Figure 4-15 on page 109) and you
can return different types of VTK objects that best describe your mesh type. This section
gives example code to show how you would take data read from your file format and turn
it into VTK objects that describe your mesh. The details of reading data from your file
format are omitted from the example code listings because those details change for each
file format. The central message in this section is how to use data from a file format to
construct different mesh types.
Implementing your plugin 113

Creating a database reader plugin
4.5.1 Determining which mesh to return

The GetMesh method is always passed a string containing the name of the mesh that
should be returned from the plug-in. If your file format only ever has one mesh then you
can ignore the meshname argument. However, if your file format can contain more than
one mesh then you should check the name of the requested mesh before returning a VTK
object so you create and return the correct mesh.

Listing 4-21: getmesh1.C: C++ Language example for which mesh to return in GetMesh.

// NOTE - This code incomplete and is for example purposes only.

#include <InvalidVariableException.h>

vtkDataSet *
avtXXXXFileFormat::GetMesh(const char *meshname)
{

// Determine which mesh to return.
if (strcmp(meshname, "mesh") == 0)
{

// Create a VTK object for "mesh"
return mesh;

}
else if (strcmp(meshname, "mesh2") == 0)
{

// Create a VTK object for "mesh2"
return mesh2;

}
else
{

// No mesh name that we recognize.
EXCEPTION1(InvalidVariableException, meshname);

}

return 0;
}

If your database reader plug-in is derived from one of the MT or MD file format interfaces
then the GetMesh method will have, in addition to the meshname argument, either a
timestate argument, domain argument, or both. These extra arguments are both
integers that VisIt passes to your plug-in so your plug-in can select the right mesh for the
specified time state or domain. If your GetMesh method accepts a timestate argument
then you can use it to return the mesh for the specified time state, which is in the range [0,
NTS - 1], where NTS is the number of time states that your plug-in returned from its
GetNTimesteps method. The range for the domain argument, if it is present, is
[0,NDOMS - 1] where NDOMS is the number of domains that your file format added to
the numBlocks member in the avtMeshMetaData object corresponding to the mesh
named by the meshname argument.
Implementing your plugin 114

Creating a database reader plugin

4.5.2 Rectilinear meshes

A rectilinear mesh is a 2D or 3D mesh
where all coordinates are aligned with
the axes. Each axis of the rectilinear
mesh can have different, non-uniform
spacing, allowing for details to be
concentrated in certain regions of the
mesh. Rectlinear meshes are specified

Y-coordinatesby lists of coordinate values for each
axis. Since the mesh is aligned to the
axes, it is only necessary to specify one
set of X, Y, and Z values to generate all
of the coordinates for the entire mesh.

Once you read the X,Y, and Z
coordinates from your data file, you

Figure 4-22: Rectilinear mesh and its X,Y nodecan use them to assemble a
coordinates.

vtkRectilinearGrid object. The
procedure for creating a
vtkRectilinearGrid object and returning it from GetMesh is shown in the next
code listing. The underlined portions of the code listing indicate incomplete code that you
must replace with code to read values from your file format. The first such piece requires
you to read the number of dimensions for your mesh from the file format and store the
value into the ndims variable. Once you have done that, read the number of nodes in
each of the X,Y,Z dimensions and store those values in the dims array. Finally, fill in the
code for reading the X coordinate values into the xarray array and do the same for the Y
and Z coordinate arrays. Once you have replaced the underlined code portions with code
that reads values from your file format, your plug-in should be able to return a valid
vtkRectilinearGrid object once you rebuild it.

X-coordinates

Listing 4-23: getmesh_rect.C: C++ Language example for creating vtkRectilinearGrid in GetMesh.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <vtkFloatArray.h>
#include <vtkRectilinearGrid.h>

vtkDataSet *
avtXXXFileFormat::GetMesh(const char *meshname)
{

int ndims = 2;
int dims[3] = {1,1,1};
vtkFloatArray *coords[3] = {0,0,0};

// Read the ndims and number of X,Y,Z nodes from file.
ndims = NUMBER OF MESH DIMENSIONS;
Implementing your plugin 115

Creating a database reader plugin
dims[0] = NUMBER OF NODES IN X-DIMENSION;
dims[1] = NUMBER OF NODES IN Y-DIMENSION;
dims[2] = NUMBER OF NODES IN Z-DIMENSION, OR 1 IF 2D;

// Read the X coordinates from the file.
coords[0] = vtkFloatArray::New();
coords[0]->SetNumberOfTuples(dims[0]);
float *xarray = (float *)coords[0]->GetVoidPointer(0);
READ dims[0] FLOAT VALUES INTO xarray

// Read the Y coordinates from the file.
coords[1] = vtkFloatArray::New();
coords[1]->SetNumberOfTuples(dims[1]);
float *yarray = (float *)coords[1]->GetVoidPointer(0);
READ dims[1] FLOAT VALUES INTO yarray

// Read the Z coordinates from the file.
coords[2] = vtkFloatArray::New();
if(ndims > 2)
{

coords[2]->SetNumberOfTuples(dims[2]);
float *zarray = (float *)coords[2]->GetVoidPointer(0);
READ dims[2] FLOAT VALUES INTO zarray

}
else
{

coords[2]->SetNumberOfTuples(1);
coords[2]->SetComponent(0, 0, 0.);

}

//
// Create the vtkRectilinearGrid object and set its dimensions
// and coordinates.
//
vtkRectilinearGrid *rgrid = vtkRectilinearGrid::New();
rgrid->SetDimensions(dims);
rgrid->SetXCoordinates(coords[0]);
coords[0]->Delete();
rgrid->SetYCoordinates(coords[1]);
coords[1]->Delete();
rgrid->SetZCoordinates(coords[2]);
coords[2]->Delete();

return rgrid;
}
Implementing your plugin 116

Creating a database reader plugin

4.5.3 Curvilinear meshes

Curvilinear meshes are structured meshes as
are rectilinear meshes. Whereas in a
rectilinear mesh, a small set of independent
X,Y,Z coordinate arrays are used to generate
the coordinate values for each node in the
mesh, in a curvilinear mesh, the node
coordinates are explicitly given for each
node in the mesh. This means that the sizes
of the X,Y,Z coordinate arrays in a
curvilinear mesh are all NX*NY*NZ where
NX is the number of nodes in the X-
dimension, NY is the number of nodes in the
Y-dimension, and NZ is the number of nodes
in the Z-dimension. Providing the
coordinates for every node permits you to
create more complex geometries than are
possible using rectilinear meshes (See
Figure 4-24).

Curvilinear meshes are created using the vtkStructuredGrid class. The next code
listing shows how to create a vtkStructuredGrid object once you have read the
required information from your file format. The underlined portions of the code listing
indicate incomplete code that you will need to replace with code that can read data from
your file format. First, read the number of dimensions for your mesh from the file format
and store the value into the ndims variable. Once you have done that, read the number of
nodes in each of the X,Y,Z dimensions and store those values in the dims array. Finally,
fill in the code for reading the X coordinate values into the xarray array and do the same
for the Y and Z coordinate arrays. Once you have replaced the underlined code portions
with code that reads values from your file format, your plug-in should be able to return a
valid vtkStructuredGrid object once you rebuild it

Figure 4-24: Curvilinear mesh and its X,Y node
coordinates

Listing 4-25: getmesh_curv.C: C++ Language example for creating vtkStructuredGrid in GetMesh.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <vtkPoints.h>
#include <vtkStructuredGrid.h>

vtkDataSet *
avtXXXFileFormat::GetMesh(const char *meshname)
{

int ndims = 2;
int dims[3] = {1,1,1};
Implementing your plugin 117

Creating a database reader plugin
// Read the ndims and number of X,Y,Z nodes from file.
ndims = NUMBER OF MESH DIMENSIONS;
dims[0] = NUMBER OF NODES IN X-DIMENSION;
dims[1] = NUMBER OF NODES IN Y-DIMENSION;
dims[2] = NUMBER OF NODES IN Z-DIMENSION, OR 1 IF 2D;
int nnodes = dims[0]*dims[1]*dims[2];

// Read the X coordinates from the file.
float *xarray = new float[nnodes];
READ nnodes FLOAT VALUES INTO xarray

// Read the Y coordinates from the file.
float *yarray = new float[nnodes];
READ nnodes FLOAT VALUES INTO yarray

// Read the Z coordinates from the file.
float *zarray = 0;
if(ndims > 2)
{

zarray = new float[nnodes];
READ dims[2] FLOAT VALUES INTO zarray

}

//
// Create the vtkStructuredGrid and vtkPoints objects.
//
vtkStructuredGrid *sgrid = vtkStructuredGrid::New();
vtkPoints *points = vtkPoints::New();
sgrid->SetPoints(points);
sgrid->SetDimensions(dims);
points->Delete();
points->SetNumberOfPoints(nnodes);

//
// Copy the coordinate values into the vtkPoints object.
//
float *pts = (float *) points->GetVoidPointer(0);
float *xc = xarray;
float *yc = yarray;
float *zc = zarray;
if(ndims == 3)
{

for(int k = 0; k < dims[2]; ++k)
for(int j = 0; j < dims[1]; ++j)
for(int i = 0; i < dims[0]; ++i)
{

*pts++ = *xc++;
*pts++ = *yc++;
*pts++ = *zc++;

}
}
else if(ndims == 2)
{

for(int j = 0; j < dims[1]; ++j)
Implementing your plugin 118

Creating a database reader plugin
for(int i = 0; i < dims[0]; ++i)
{

*pts++ = *xc++;
*pts++ = *yc++;
*pts++ = 0.;

}
}

// Delete temporary arrays.
delete [] xarray;
delete [] yarray;
delete [] zarray;

return sgrid;
}

4.5.4 Point meshes

Point meshes are collections of particle positions
that can be displayed in VisIt as points or small
glyphed icons. Point meshes can be returned from
the GetMesh method as
vtkUnstructuredGrid objects that contain
the locations of the points and connectivity
composed entirely of vertex cells.

The next code listing shows how to create a
vtkUnstructuredGrid object once you have
read the required information from your file
format. The underlined portions of the code listing
indicate incomplete code that you will need to
replace with code that can read data from your file
format. First, read the number of dimensions for
your mesh from the file format and store the value into the ndims variable. Next, read
the number of points that make up the point mesh into the nnodes variable. Finally, fill in
the code for reading the X coordinate values into the xarray array and do the same for
the Y and Z coordinate arrays. Once you have replaced the underlined code portions with
code that reads values from your file format, your plug-in should be able to return a valid
vtkUnstructuredGrid object once you rebuild it.

Figure 4-26: 3D point mesh

Listing 4-27: getmesh_point.C: C++ Language example for returning a point mesh from GetMesh.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <vtkPoints.h>
#include <vtkUnstructuredGrid.h>
Implementing your plugin 119

Creating a database reader plugin

vtkDataSet *
avtXXXFileFormat::GetMesh(const char *meshname)
{

int ndims = 2;
int nnodes;

// Read the ndims and number of nodes from file.
ndims = NUMBER OF MESH DIMENSIONS;
nnodes = NUMBER OF NODES IN THE MESH;

// Read the X coordinates from the file.
float *xarray = new float[nnodes];
READ nnodes FLOAT VALUES INTO xarray

// Read the Y coordinates from the file.
float *yarray = new float[nnodes];
READ nnodes FLOAT VALUES INTO yarray

// Read the Z coordinates from the file.
float *zarray = 0;
if(ndims > 2)
{

zarray = new float[nnodes];
READ dims[2] FLOAT VALUES INTO zarray

}

//
// Create the vtkPoints object and copy points into it.
//
vtkPoints *points = vtkPoints::New();
points->SetNumberOfPoints(nnodes);
float *pts = (float *) points->GetVoidPointer(0);
float *xc = xarray;
float *yc = yarray;
float *zc = zarray;
if(ndims == 3)
{

for(int i = 0; i < nnodes; ++i)
{

*pts++ = *xc++;
*pts++ = *yc++;
*pts++ = *zc++;

}
}
else if(ndims == 2)
{

for(int i = 0; i < nnodes; ++i)
{

*pts++ = *xc++;
*pts++ = *yc++;
*pts++ = 0.;

}
}
Implementing your plugin 120

Creating a database reader plugin

//
// Create a vtkUnstructuredGrid to contain the point cells.
//
vtkUnstructuredGrid *ugrid = vtkUnstructuredGrid::New();
ugrid->SetPoints(points);
points->Delete();
ugrid->Allocate(nnodes);
vtkIdType onevertex;
for(int i = 0; i < nnodes; ++i)
{

onevertex = i;
ugrid->InsertNextCell(VTK_VERTEX, 1, &onevertex);

}

// Delete temporary arrays.
delete [] xarray;
delete [] yarray;
delete [] zarray;

return ugrid;
}

4.5.5 Unstructured meshes

Unstructured meshes are collections of cells of various
geometries that are specified using indices into an
array of points. When you write your GetMesh
method, if your mesh is best described as an
unstructured mesh then you can return a
vtkUnstructuredGrid object.

Like some of the other mesh objects, the
vtkUnstructuredGrid object also uses a
vtkPoints object to contain its node array. In
addition to the vtkPoints array, the
vtkUnstructuredGrid object maintains a list of cells

Figure 4-28: 2D unstructured mesh
whose connectivity is determined by setting the cell composed of triangles

and quadrilaterals. The type to one of VTK’s predefined unstructured cell node numbers are
types (VTK_VERTEX, VTK_LINE, labelled red and the cell

numbers are labelled VTK_TRIANGLE, VTK_QUAD, VTK_TETRA, blue.
VTK_PYRAMID, VTK_WEDGE, and
VTK_HEXAHEDRON), shown in Figure 4-29. When you add a cell using one of the
predefined unstructured cell types, you must also provide a list of node indices that are
Implementing your plugin 121

Creating a database reader plugin

used as the nodes for the cell. The number of nodes that each cell contains is determined
by its cell type.

4

2 3

3 22

0 1 0 1 0 1

VTK_VERTEX VTK_TRIANGLE VTK_TETRA VTK_PYRAMID

5
4

3

5

4

67

2

0 0

1

1

23

0 1

2

3

VTK_LINE VTK_QUAD VTK_WEDGE VTK_HEXAHEDRON

Figure 4-29: Node ordering for some VTK unstructured cell types

The next code listing shows how to create a vtkUnstructuredGrid object. The
connectivity for an unstructured grid can be stored in a file format using a myriad of
different approaches. The example code assumes that the connectivity will be stored in an
integer array that contains the information for each cell, beginning with the cell type for
the first cell, followed by a list of node indices that are used in the cell. After that, the cell
type for the second cell appears, followed by its node indices, and so on. For example, if
you wanted to store connectivity for cells 1 and 2 in the example shown in Figure 4-28
then the connectivity array would contain: [VTK_TRIANGLE, 2, 4, 7,
VTK_TRIANGLE, 4, 8, 7, ...]. Note that the node indices in the example begin at
one so the example code will subtract one from all of the node indices to ensure that they
begin at zero, the starting index for the vtkPoints array.

Listing 4-30: getmesh_ugrid.C: C++ Language example for returning an unstructured mesh from
GetMesh.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <vtkPoints.h>
#include <vtkUnstructuredGrid.h>
#include <InvalidVariableException.h>
Implementing your plugin 122

Creating a database reader plugin

vtkDataSet *
avtXXXFileFormat::GetMesh(const char *meshname)
{

int ndims = 2;
int nnodes, ncells, origin = 1;

// Read the ndims, nnodes, ncells, origin from file.
ndims = NUMBER OF MESH DIMENSIONS;
nnodes = NUMBER OF NODES IN THE MESH;
ncells = NUMBER OF CELLS IN THE MESH;
origin = GET THE ARRAY ORIGIN (0 or 1);

// Read the X coordinates from the file.
float *xarray = new float[nnodes];
READ nnodes FLOAT VALUES INTO xarray

// Read the Y coordinates from the file.
float *yarray = new float[nnodes];
READ nnodes FLOAT VALUES INTO yarray

// Read the Z coordinates from the file.
float *zarray = 0;
if(ndims > 2)
{

zarray = new float[nnodes];
READ dims[2] FLOAT VALUES INTO zarray

}

// Read in the connectivity array. This example assumes that
// the connectivity will be stored: type, indices, type,
// indices, ... and that there will be a type/index list
// pair for each cell in the mesh.
int *connectivity = 0;
ALLOCATE connectivity ARRAY AND READ VALUES INTO IT.

//
// Create the vtkPoints object and copy points into it.
//
vtkPoints *points = vtkPoints::New();
points->SetNumberOfPoints(nnodes);
float *pts = (float *) points->GetVoidPointer(0);
float *xc = xarray;
float *yc = yarray;
float *zc = zarray;
if(ndims == 3)
{

for(int i = 0; i < nnodes; ++i)
{

*pts++ = *xc++;
*pts++ = *yc++;
*pts++ = *zc++;

}
}
Implementing your plugin 123

Creating a database reader plugin
else if(ndims == 2)
{

for(int i = 0; i < nnodes; ++i)
{

*pts++ = *xc++;
*pts++ = *yc++;
*pts++ = 0.;

}
}

// Delete temporary arrays.
delete [] xarray;
delete [] yarray;
delete [] zarray;

//
// Create a vtkUnstructuredGrid to contain the point cells.
//
vtkUnstructuredGrid *ugrid = vtkUnstructuredGrid::New();
ugrid->SetPoints(points);
points->Delete();
ugrid->Allocate(ncells);
vtkIdType verts[8];
int *conn = connectivity
for(int i = 0; i < ncells; ++i)
{

int fileCellType = *conn++;
// You file’s cellType will likely not match so you
// will have to translate fileCellType to a VTK
// cell type.
int cellType = MAP fileCellType TO VTK CELL TYPE.

// Determine number of vertices for each cell type.
if(cellType == VTK_VERTEX)

nverts = 1;
else if(cellType == VTK_LINE)

nverts = 2;
else if(cellType == VTK_TRIANGLE)

nverts = 3;
else if(cellType == VTK_QUAD)

nverts = 4;
else if(cellType == VTK_TETRA)

nverts = 4;
else if(cellType == VTK_PYRAMID)

nverts = 5;
else if(cellType == VTK_WEDGE)

nverts = 6;
else if(cellType == VTK_HEXAHEDRON)

nverts = 8;
else
{

delete [] connectivity;
ugrid->Delete();
// Other cell type - need to add a case for it.
Implementing your plugin 124

Creating a database reader plugin
// In the meantime, throw exception or if you
// know enough, skip the cell.
EXCEPTION0(InvalidVariableException, meshname);

}

// Make a list of node indices that make up the cell.
for(int j = 0; j < nverts; ++j)

verts[j] = conn[j] - origin;
conn += nverts;

// Insert the cell into the mesh.
ugrid->InsertNextCell(cellType, nverts, verts);

}

delete [] connectivity;

return ugrid;
}

The previous code listing shows how to create an unstructured mesh in a
vtkUnstructuredGrid object. The code listing contains underlined portions that you
must replace with working code to read the relevant data from your file format. The first
instance of code that must be replaced are the lines that read ndims, nnodes, ncells,
and origin from the file format. The ndims variable should contain 2 or 3, depending
on whether your data is 2D or 3D. The nnodes variable should contain the number of
nodes that are used in the set of vertices that describe your unstructured mesh. The
ncells variable should contain the number of cells that will be added to your
unstructured mesh. The origin variable should contain 0 or 1, depending on whether
your connectivity indices begin at 0 or 1. Once you have set those variables to the
appropriate values, you must read in the X,Y, and Z coordinate arrays from the file format
and store the values into the xarray, yarray, and zarray array variables. If your file
format keeps X,Y,Z values together in a single array then you may be able to read the
coordinate values directly into the vtkPoint object’s memory, skipping the step of
copying the X,Y,Z coordinate components into the vtkPoint object.

After reading in the coordinate values from your file format, unstructured meshes require
two more changes to the code in the listing. The next change requires you to allocate
memory for a connectivity array, which stores the type of cells and the nodes indices
of the nodes that are used in the cells. The final change that you must make to the source
code in the listing is located further down in the loop that adds cells to the
vtkUnstructuredGrid object. The cell type read from your file format will most
likely not use the same enumerated type values that VTK uses for its cell types
(VTK_VERTEX, VTK_LINE, ...) so you will need to add code to translate from your cell
type designation to VTK cell type numbers. After making the necessary changes and
rebuilding your plug-in, your plug-in’s GetMeshmethod should be capable of returning a
valid vtkUnstructuredGrid object for VisIt to plot.
Implementing your plugin 125

Creating a database reader plugin
4.6 Returning a scalar variable

Now that you can successfully create a Mesh plot of the meshes from your file format, you
can focus on other types of data such as scalars. If you exposed scalar variables in your
plug-in’s PopulateDatabaseMetaData method then those variable names will
appear in the plot menus for plots that can use scalar variables (e.g. the Pseudocolor plot).
When you create a plot of a scalar variable and click the Draw button in the VisIt GUI,
VisIt will tell your database reader plug-in to open your file, read the mesh, and then your
plug-in’s GetVar method will be called with the name of the variable that you want to
plot. The GetVar method, like the GetMesh method, takes a variable name as an
argument. When you receive the variable name in the GetVar method you should access
your file and read out the desired variable and return it in a VTK data array such as a
vtkFloatArray or a vtkDoubleArray. A vtkFloatArray is a VTK object that
encapsulates a dynamically allocated array of a given length. The length of the array that
you allocate to contain your variable must match either the number of cells in your mesh
or the number of nodes in your mesh. The length is determined by the scalar variable’s
centering (cell-centered, node-centered).

Listing 4-31: getvar.C: C++ Language example for returning data from GetVar.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <vtkFloatArray.h>

vtkDataArray *
avtXXXFileFormat::GetVar(const char *varname)
{

int nvals;
// Read the number of vaues contained in the array
// specified by varname.
nvals = NUMBER OF VALUES IN ARRAY NAMED BY varname;

// Allocate the return vtkFloatArray object. Note that
// you can use vtkFloatArray, vtkDoubleArray,
// vtkUnsignedCharArray, vtkIntArray, etc.
vtkFloatArray *arr = vtkFloatArray::New();
arr->SetNumberOfTuples(nvals);
float *data = (float *)arr->GetVoidPointer(0);
READ nvals FLOAT NUMBERS INTO THE data ARRAY.

return arr;
}

In the previous code listing, there are two underlined areas that need to have code added to
them in order to have a completed GetVar method. The first change that you must make
is to add code to read the size of the array to be created into the nvals variable. The value
that is read into the nvals variable must be either the number of cells in the mesh on
Implementing your plugin 126

Creating a database reader plugin

which the variable is defined if you have a cell-centered variable or it must be the number
of nodes in the mesh. Once you have successfully set the proper value into the nvals
variable, you can proceed to read values from your file format into the data array, which
points to storage owned by the vtkFloatArray object that will be returned from the
GetVar method. Once you have made these changes, you can rebuilt your plug-in and
begin plotting scalar variables.

4.7 Returning a vector variable

If you exposed vector variables in your plug-in’s PopulateDatabaseMetaData
method then those variable names will appear in the plot menus for plots that can use
vector variables (e.g. the Vector plot). When you create a plot of a vector variable and
click the Draw button in the VisIt GUI, VisIt will tell your database reader plug-in to open
your file, read the mesh, and then your plug-in’s GetVectorVar method will be called
with the name of the variable that you want to plot. The GetVectorVar method, like
the GetMesh method, takes a variable name as an argument. When you receive the
variable name in the GetVectorVar method you should access your file and read out
the desired variable and return it in a VTK data array such as a vtkFloatArray or a
vtkDoubleArray. A vtkFloatArray is a VTK object that encapsulates a
dynamically allocated array of a given length. The length of the array that you allocate to
contain your variable must match either the number of cells in your mesh or the number of
nodes in your mesh. The length is determined by the scalar variable’s centering (cell-
centered, node-centered). In addition to setting the length, which like a scalar variable is
tied to the number of cells or nodes, you must also set the number of vector components.
In VisIt, vector variables always have three components. If the third component is not
needed then all values in the third component should be set to zero.

The GetVectorVar code listing shows how to return a vtkFloatArray with
multiple components from the GetVectorVar method. As with the code listing for
GetVar, this code listing requires you to replace underlined lines of code with code that
reads data from your file format and stores the results in the variables provided.

Listing 4-32: getvectorvar.C: C++ Language example for returning data from GetVectorVar.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <vtkFloatArray.h>
#include <InvalidVariableException.h>

vtkDataArray *
avtXXXFileFormat::GetVectorVar(const char *varname)
{

int nvals, ncomps = 3;

// Read the number of values contained in the array
// specified by varname.
Implementing your plugin 127

Creating a database reader plugin
nvals = NUMBER OF VALUES IN ARRAY NAMED BY varname;
ncomps = NUMBER OF VECTOR COMPONENTS IN ARRAY NAMED BY varname;

// Read component 1 from the file.
float *comp1 = new float[nvals];
READ nvals FLOAT VALUES INTO comp1

// Read component 2 from the file.
float *comp2 = new float[nvals];
READ nvals FLOAT VALUES INTO comp2

// Read component 3 from the file.
float *comp3 = 0;
if(ncomps > 2)
{

comp3 = new float[nvals];
READ nvals FLOAT VALUES INTO comp3

}

// Allocate the return vtkFloatArray object. Note that
// you can use vtkFloatArray, vtkDoubleArray,
// vtkUnsignedCharArray, vtkIntArray, etc.
vtkFloatArray *arr = vtkFloatArray::New();
arr->SetNumberOfComponents(3);
arr->SetNumberOfTuples(nvals);
float *data = (float *)arr->GetVoidPointer(0);
float *c1 = comp1;
float *c2 = comp2;
float *c3 = comp3;
if(ncomps == 3)
{

for(int i = 0; i < nvals; ++i)
{

*data++ = *c1++;
*data++ = *c2++;
*data++ = *c3++;

}
}
else if(ncomps == 2)
{

for(int i = 0; i < nvals; ++i)
{

*data++ = *c1++;
*data++ = *c2++;
*data++ = 0.;

}
}
else
{

delete [] comp1;
delete [] comp2;
delete [] comp3;
arr->Delete();
EXCEPTION1(InvalidVariableException, varname);
Implementing your plugin 128

Creating a database reader plugin
}

// Delete temporary arrays.
delete [] comp1;
delete [] comp2;
delete [] comp3;

return arr;
}

4.8 Using a VTK reader class

The implementations so far for the GetMesh, GetVar, and GetVectorVar plug-in
methods have assumed that the database plug-in would do the work of interacting with the
file format to read data into VTK form. Most of the work of reading a file and creating
VTK objects from it can be handled at the VTK level if you wish. This means that it is
possible to use an existing VTK reader class to read data into VisIt if you are willing to
implement your plug-in methods so that they in turn call the VTK reader object’s methods.
See VisIt’s VTK database reader plug-in for an example of how to call VTK reader objects
from inside a VisIt database reader plug-in.

5.0 Advanced topics

If you’ve implemented your database reader plug-in using only the techniques outlined in
this chapter so far then you likely have a database reader plug-in that works and correctly
serves up its data to VisIt in VTK form. This part of the chapter explains some of the more
advanced, though not necessarily required, techniques that you can use to enhance your
plug-in. For instance, you can enhance your plug-in so it returns the correct simulation
times from the data files. You can also add code to return data and spatial extents for your
data, enabling VisIt to make more optimization decisions when processing files with
multiple domains.

5.1 Returning cycles and times

Simulations often iterate for many thousands of cycles while they solve their systems of
equations. Generally, each simulation cycle has an associated cycle number and time
value. Many file formats save this information so it can be made available later to post-
processing tools such as VisIt. VisIt uses cycles and times to help you navigate through
time in your database by providing the same time frame of reference that your simulation
used. VisIt’s File panel can display times next to each time state in a database and can
Advanced topics 129

Creating a database reader plugin
also show the current time value as you scroll through time using the time slider. Cycle
and time values for the current time state are often displayed in the visualization window.

Cycles and times in VisIt’s user interface

Figure 4-33: Cycles and times values are used to help you navigate through time

Returning cycle and time values from your plug-in is completely optional. In fact,
returning cycle and time values for data such as CAD drawings does not make sense.
Since returning cycles and times is optional in a VisIt database reader plug-in, you can
choose to not implement the methods that return cycles and times. You can also implement
code to return time but not cycles or vice-versa.

The mechanics of returning cycles and times are a little different depending on whether
you have written an ST or an MT database reader plug-in. In any case, if your plug-in
implements the methods to return cycles or times then those methods will be some of the
first methods called when VisIt accesses your database reader plug-in. VisIt calls the
methods to get cycles and times and if the returned values appear to be valid then they are
Advanced topics 130

Creating a database reader plugin

added to the metadata for your file so they can be returned to the VisIt clients and used to
populate windows such as the File Information window, shown in Figure 4-34.

Figure 4-34: The File Information window can be used to inspect
the cycles and times returned from your plug-in.

5.1.1 Returning cycles and times in an ST plug-in

When VisIt creates plug-in objects to handle a list of files using an ST plug-in, there is one
plug-in object per file in the list of files. Since each plug-in object can only ever be
associated with one file, the programming interface for returning cycles and times for an
ST plug-in provides methods that return a single value. The methods for returning cycles
and times for an ST plug-in are:

virtual bool ReturnsValidCycle() const { return true; }
virtual int GetCycle(void);
virtual bool ReturnsValidTime() const { return true; }
virtual double GetTime(void);

Implementing valid cycles and times can be done independently of one another and there
is no requirement that you have to implement both or either of them, for that matter. The
ReturnsValidCycle method is a simple method that you should expose if you plan to
provide a custom GetCycle method in your database reader plug-in. If you provide
GetCycle then the ReturnsValidCycle method should return true. The same
pattern applies if you implement GetTime - except that you would also implement the
Advanced topics 131

Creating a database reader plugin

ReturnsValidTime method. Replace the underlined sections of code in the listing
with code to read the correct cycle and time values from your file format.

Listing 4-35: cycletime_st.C: C++ Language example for returning cycles, times from ST plug-in.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

int
avtXXXFileFormat::GetCycle(void)
{

int cycle = OPEN FILE AND READ THE CYCLE VALUE;
return cycle;

}

double
avtXXXFileFormat::GetTime(void)
{

double dtime = OPEN FILE AND READ THE TIME VALUE;
return dtime;

}

In the event that you implement the GetCycle method but no cycle value is available in
the file, you can return the INVALID_CYCLE value to make VisIt discard your plug-in’s
cycle number and guess the cycle number from the filename. If you want VisIt to
successfully guess the cycle number from the filename then you must implement the
GetCycleFromFilename method.

int
avtXXXXFileFormat::GetCycleFromFilename(const char *f) const
{

 return GuessCycle(f);
}

5.1.2 Returning cycles and times in an MT plug-in

An MT database reader plug-in may return cycles and times for multiple time states so the
programming interface for MT plug-ins allows you to return vectors of cycles and times.
In addition, an MT database reader plug-in prefers to know upfront how many time states
will be returned from the file format so in addition to GetCycles and GetTimes
methods, there is a GetNTimesteps method that is among the first methods called from
your database reader plug-in.
Advanced topics 132

Creating a database reader plugin
virtual void GetCycles(std::vector<int> &);
virtual void GetTimes(std::vector<double> &);
virtual int GetNTimesteps(void);

As with ST plug-ins, there is no requirement that an MT plug-in must provide a list of
cycles or times. However, an MT plug-in must provide a GetNTimesteps method. If
you are enhancing your database reader plug-in to return cycles and times then it is
convenient to implement your GetNTimesteps method such that it just calls your
GetCycles or GetTimes method and returns the length of the vector returned by those
methods. This simplifies the implementation and ensures that the number of time states
reported by your database reader plug-in matches the length of the cycle and time vectors
returned from GetCycles and GetTimes. Replace the underlined sections of code in
the listing with code to read the correct cycles and times from your file format.

Listing 4-36: cycletime_mt.C: C++ Language example for returning cycles, times from MT plug-in.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

void
avtXXXFileFormat::GetCycles(std::vector<int> &cycles)
{

int ncycles, *vals = 0;
ncycles = OPEN FILE AND READ THE NUMBER OF CYCLES;
READ ncycles INTEGER VALUES INTO THE vals ARRAY;

// Store the cycles in the vector.
for(int i = 0; i < ncycles; ++i)

cycles.push_back(vals[i]);

delete [] vals;
}

void
avtXXXFileFormat::GetTime(std::vector<double> ×)
{

int ntimes;
double *vals = 0;
ntimes = OPEN FILE AND READ THE NUMBER OF TIMES;
READ ntimes DOUBLE VALUES INTO THE vals ARRAY;

// Store the times in the vector.
for(int i = 0; i < ntimes; ++i)

times.push_back(vals[i]);

delete [] vals;
}

int
avtXXXXFileFormat::GetNTimesteps(void)
Advanced topics 133

Creating a database reader plugin

{
std::vector<double> times;
GetTimes(times);
return times.size();

}

5.2 Auxiliary data

This section describes how to enable your MD database reader plug-in so it can provide
auxiliary data such as data extents, spatial extents, and materials to VisIt if they are
available in your file format. “Auxiliary data”, is the generic term for many types of data
that VisIt’s pipeline can use to perform specific tasks such as I/O reduction or material
selection. VisIt’s database reader plug-in interfaces provide a method called
GetAuxiliaryData that you can implement if you want your plug-in to be capable of
returning auxiliary data. Note however that if your plug-in is MTMD then you will have to
cache your spatial and data extents in the plug-in’s variable cache in the
PopulateDatabaseMetaDatamethod instead of returning that information from the
GetAuxiliaryData method. This subtle difference in how certain metadata is
accessed by VisIt must be observed by an MTMD plug-in in order for it to return spatial
and data extents.

The method arguments for the GetAuxiliaryData method may vary somewhat
depending on whether your database reader plug-in is based on the STSD, STMD, MTSD,
MTMD interfaces. There is an extra integer argument for the time state if your plug-in is
MT and there is another integer argument for the domain if your plug-in is MD. Those
differences aside, the GetAuxiliaryData method always accepts the name of a
variable, a string indicating the type of data being requested, a pointer to optional data
required by the type of auxiliary data being requested, and a return reference for a
destructor function that will be responsible for freeing resources for the returned data. The
variable name that VisIt passes to the GetAuxiliaryData method is the name of a
variable such as those passed to the GetVar method when VisIt wants to read a variable’s
data.

5.2.1 Returning data extents

When an MD database reader plug-in provides data extents for each of its domains, VisIt
has enough information to make important optimization decisions in filters that support
data extents. For example, if you create a Contour plot using a specific contour value, VisIt
can check the data extents for each domain before any domains are read from disk and
determine the list of domains that contain the desired contour value. After determining
which subset of the domains will contribute to the final image, VisIt’s compute engine
then reads and processes only those domains, saving work and accelerating VisIt’s
computations. For a more complete explanation of data extents, see “Writing data extents”
on page 72.
Advanced topics 134

Creating a database reader plugin

In the context of returning data extents, VisIt first checks a plug-in’s variable cache for
extents. If the desired extents are not available then VisIt calls the plug-in’s
GetAuxiliaryData method with the name of the scalar variable for which data
extents are required and also passes AUXILIARY_DATA_DATA_EXTENTS as the type
argument, indicating that the GetAuxiliaryData method is being called to obtain the
data extents for the specified scalar variable. If the data extents for the specified variable
are not available then the GetAuxiliaryData method should return 0. If the data
extents are available then the list of minimum and maximum values for the specified
variable are assembled into an interval tree structure that VisIt uses for fast comparisons of
different data ranges. Once the interval tree is constructed, as shown in the code listing, the
GetAuxiliaryData method must return the interval tree object and set the destructor
function argument to a function that can be called to later destroy the interval tree. To add
support for data extents to your database reader plug-in, copy the GetAuxiliaryData
method in the code listing and replace the underlined lines of code with code that reads the
required information from your file format.

Listing 4-37: dataextents.C: C++ Language example for returning data extents.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <avtIntervalTree.h>

// STMD version of GetAuxiliaryData.
void *
avtXXXXFileFormat::GetAuxiliaryData(const char *var,

int domain, const char *type, void *,
DestructorFunction &df)

{
void *retval = 0;

if(strcmp(type, AUXILIARY_DATA_DATA_EXTENTS) == 0)
{

// Read the number of domains for the mesh.
int ndoms = READ NUMBER OF DOMAINS FROM FILE;

// Read the min/max values for each domain of the
// "var" variable. This information should be in
// a single file and should be available without
// having to read the real data.
double *minvals = new double[ndoms];
double *maxvals = new double[ndoms];
READ ndoms DOUBLE VALUES INTO minvals ARRAY.
READ ndoms DOUBLE VALUES INTO maxvals ARRAY.

// Create an interval tree
avtIntervalTree *itree = new avtIntervalTree(ndoms, 1);
for(int dom = 0; dom < ndoms; ++dom)
{

double range[2];
Advanced topics 135

Creating a database reader plugin
range[0] = minvals[dom];
range[1] = maxvals[dom];
itree->AddElement(dom, range);

}
itree->Calculate(true);

// Delete temporary arrays.
delete [] minvals;
delete [] maxvals;

// Set return values
retval = (void *)itree;
df = avtIntervalTree::Destruct;

}

return retval;
}

5.2.2 Returning spatial extents

Another type of auxiliary data that VisIt supports for MD file formats are spatial extents.
When VisIt knows the spatial extents for all of the domains that comprise a mesh, VisIt
can optimize operations such as the Slice operator by first determining whether the slice
will intersect a given domain. The Slice operator is thus able to use spatial extents to
determine which set of domains must be read from disk and processed in order to produce
the correct visualization. Spatial extents are used in this way by many filters to reduce the
set of domains that must be processed.

When VisIt asks the database reader plug-in for spatial extents, the
GetAuxiliaryData method is called with its type argument set to
AUXILIARY_DATA_SPATIAL_EXTENTS. When VisIt creates spatial extents, they are
stored in an interval tree structure as they are with data extents. The main difference is the
input into the interval tree. When adding information about a specific domain to the
interval tree, you must provide the minimum and maximum spatial values for the domain’s
X, Y, and Z dimensions. The spatial extents for one domain are expected to be provided in
the following order: xmin, xmax, ymin, ymax, zmin, zmax. To add support for spatial
extents to your database reader plug-in, copy the GetAuxiliaryData method in the
code listing and replace the underlined lines of code with code that reads the required
information from your file format.

Listing 4-38: spatialextents.C: C++ Language example for returning spatial extents.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <avtIntervalTree.h>

// STMD version of GetAuxiliaryData.
Advanced topics 136

Creating a database reader plugin
void *
avtXXXXFileFormat::GetAuxiliaryData(const char *var,

int domain, const char *type, void *,
DestructorFunction &df)

{
void *retval = 0;

if(strcmp(type, AUXILIARY_DATA_SPATIAL_EXTENTS) == 0)
{

// Read the number of domains for the mesh.
int ndoms = READ NUMBER OF DOMAINS FROM FILE;

// Read the spatial extents for each domain of the
// mesh. This information should be in a single
// and should be available without having to
// read the real data. The expected format for
// the data in the spatialextents array is to
// repeat the following pattern for each domain:
// xmin, xmax, ymin, ymax, zmin, zmax.
double *spatialextents = new double[ndoms * 6];
READ ndoms*6 DOUBLE VALUES INTO spatialextents ARRAY.

// Create an interval tree
avtIntervalTree *itree = new avtIntervalTree(ndoms, 3);
double *extents = spatialextents;
for(int dom = 0; dom < ndoms; ++dom)
{

itree->AddElement(dom, extents);
extents += 6;

}
itree->Calculate(true);

// Delete temporary array.
delete [] spatialextents;

// Set return values
retval = (void *)itree;
df = avtIntervalTree::Destruct;

}
return retval;

}

5.2.3 Returning materials

Materials are another type of auxiliary data that database plug-ins can provide. A material
classifies different pieces of the mesh into different named subsets that can be turned on
and off using VisIt’s Subset window. In the simplest case, you can think of a material as
a cell-centered variable, or matlist, defined on your mesh where each cell contains an
integer that identifies a particular material such as “Steel” or “Air”. VisIt’s
avtMaterial object is used to encapsulate knowledge about materials. The
avtMaterial object contains the matlist array and a list of names corresponding to
Advanced topics 137

Creating a database reader plugin

each unique material number in the matlist array. Materials can also be structured so that
instead of providing just one material number for each cell in the mesh, you can provide
multiple materials per cell with volume fractions occupied by each. So-called “mixed
materials” are created using additional arrays, described in “Materials” on page 83. To add
support for materials in your database reader plug-in’s GetAuxiliaryData method,
replace the underlined lines in the code example with code that read the necessary values
from your file format.

Listing 4-39: matclean.C: C++ Language example for returning material data.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <avtMaterial.h>

// STMD version of GetAuxiliaryData.
void *
avtXXXXFileFormat::GetAuxiliaryData(const char *var,

int domain, const char *type, void *,
DestructorFunction &df)

{
void *retval = 0;

if(strcmp(type, AUXILIARY_DATA_MATERIAL) == 0)
{

int dims[3] = {1,1,1}, ndims = 1;
// Structured mesh case
ndims = MESH DIMENSION, 2 OR 3;
dims[0] = NUMBER OF ZONES IN X DIMENSION;
dims[1] = NUMBER OF ZONES IN Y DIMENSION;
dims[2] = NUMBER OF ZONES IN Z DIMENSION, OR 1 IF 2D;

// Unstructured mesh case
dims[0] = NUMBER OF ZONES IN THE MESH
ndims = 1;

// Read the number of materials from the file. This
// must have already been read from the file when
// PopulateDatabaseMetaData was called.
int nmats = NUMBER OF MATERIALS;

// The matnos array contains the list of numbers that
// are associated with particular materials. For example,
// matnos[0] is the number that will be associated with
// the first material and any time it is seen in the
// matlist array, that number should be taken to mean
// material 1. The numbers in the matnos array must
// all be greater than or equal to 1.
int *matnos = new int[nmats];
READ nmats INTEGER VALUES INTO THE matnos ARRAY.

// Read the material names from your file format or
Advanced topics 138

Creating a database reader plugin
// make up names for the materials. Use the same
// approach as when you created material names in
// the PopulateDatabaseMetaData method.
char **names = new char *[nmats];
READ MATERIAL NAMES FROM YOUR FILE FORMAT UNTIL EACH
ELEMENT OF THE names ARRAY POINTS TO ITS OWN STRING.

// Read the matlist array, which tells what the material
// is for each zone in the mesh.
int nzones = dims[0] * dims[1] * dims[2];
int *matlist = new int[nzones];
READ nzones INTEGERS INTO THE matlist array.

// Optionally create mix_mat, mix_next, mix_zone, mix_vf
// arrays and read their contents from the file format.

// Use the information to create an avtMaterial object.
avtMaterial *mat = new avtMaterial(

nmats,
matnos,
names,
ndims,
dims,
0,
matlist,
0, // length of mix arrays
0, // mix_mat array
0, // mix_next array
0, // mix_zone array
0 // mix_vf array
);

// Clean up.
delete [] matlist;
delete [] matnos;
for(int i = 0; i < nmats; ++i)

delete [] names[i];
delete [] names;

// Set the return values.
retval = (void *)mat;
df = avtMaterial::Destruct;

}

return retval;
}

5.3 Returning ghost zones

Ghost zones are mesh zones that should not be visible in the visualization but may provide
additional information such as values along domain boundaries. VisIt uses ghost zones for
Advanced topics 139

Creating a database reader plugin
ensuring variable continuity across domain boundaries, for removing internal domain
boundary faces, and for blanking out specific zones. This section covers the code that must
be added to make your database reader plug-in order for it to return ghost zones to VisIt.

5.3.1 Blanking out zones

Blanking out specific zones so they do not appear in a visualization is a common practice
for creating holes in structured meshes so cells zones that overlap or tangle on top of one
another can be removed from the mesh. If you want to create a mesh that contains voids
where zones have been removed then you can add a special cell-centered array to your
mesh before you return it from your plug-in’s GetMesh method. The code in the listing
can be used to remove zones from any mesh type and works by looking through a mesh-
sized array containing on/off values for each zone and sets the appropriate values into the
ghost zone array that gets added to the mesh object. Replace any underlined code with
code that can read the necessary values from your file format.

Listing 4-40: gz_blank.C: C++ Language example for returning a mesh with blanked out zones.

// NOTE - This code incomplete and requires underlined portions
// to be replaced with code to read values from your file format.

#include <avtGhostData.h>
#include <vtkUnsignedCharArray.h>

vtkDataSet *
avtXXXXFileFormat::GetMesh(const char *meshname)
{

// Code to create your mesh goes here.
vtkDataSet *retval = CODE TO CREATE YOUR MESH;

// Now that you have your mesh, figure out which cells need
// to be removed.
int nCells = retval->GetNumberOfCells();
int *blanks = new int[nCells];
READ nCells INTEGER VALUES INTO blanks ARRAY.

// Now that we have the blanks array, create avtGhostZones.
unsigned char realVal = 0, ghost = 0;
avtGhostData::AddGhostZoneType(ghost,

ZONE_NOT_APPLICABLE_TO_PROBLEM);
vtkUnsignedCharArray *ghostCells = vtkUnsignedCharArray::New();
ghostCells->SetName("avtGhostZones");
ghostCells->Allocate(nCells);
for(int i = 0; i < nCells; ++i)
{

if(blanks[i])
ghostCells->InsertNextValue(realVal);

else
ghostCells->InsertNextValue(ghost);

}
Advanced topics 140

Creating a database reader plugin
retval->GetCellData()->AddArray(ghostCells);
retval->SetUpdateGhostLevel(0);
ghostCells->Delete();

// Clean up
delete [] blanks;

return retval;
}

5.3.2 Ghost zones at the domain boundaries

When ghost zones are used to ensure continuity across domains, an extra layer of zones
must be added to the mesh boundaries where the boundary is shared with another domain.
Once you have done that step, the approach for providing ghost zones is the same as for
blanking out cells using ghost zones if your blanks array contains zeroes for only the
zones that appear on domain boundaries. The one minor difference is that you must
substitute the DUPLICATED_ZONE_INTERNAL_TO_PROBLEM ghost zone type for the
ZONE_NOT_APPLICABLE_TO_PROBLEM ghost zone type in the code example.

5.4 Parallelizing your reader

VisIt is a distributed program made up of multiple software processes that act as a whole.
The software process that reads in data and processes it is the compute engine, which
comes in serial and parallel versions. All of the libE plug-ins in VisIt also have both
serial and parallel versions. The parallel libE plug-ins can contain specialized MPI
communication to support the communication patterns needed by the algorithms used. If
you want to parallelize your database reader plug-in then, in most cases, you will have to
use the MD interface or convert from SD to MD. There are some SD formats that can
adaptively decompose their data so each processor has work (see the ViSUS plug-in) but
most database plug-ins that benefit from parallelism instead are implemented as MD plug-
ins. MD plug-ins are a natural fit for the parallel compute engine because they serve data
that is already decomposed into domains. Some database reader plug-ins, such as the BOV
plug-in, take single domain meshes and automatically decompose them into multiple
domains for faster processing on multiple processors.

Deriving your plug-in from an MD interface is useful since it naturally tells VisIt to expect
data from more than one domain when reading your file format. There are a number of
parallel optimizations that can be made inside of your MD database reader plug-in. For
example, you might have one processor read the metadata and broadcast it to all other
processors so when you visualize your data with a large number of processors, they are not
all trying to read the file that contains the metadata.

VisIt’s parallel compute engine can use one of two different load balancing schemes: static
or dynamic. In static load balancing, each processor is assigned a fixed list of domains and
each of those domains is processed one at a time in parallel visualization pipelines until
Advanced topics 141

Creating a database reader plugin
the result is computed. When static load balancing is used, the same code is executed on
all processors with different data and there are more opportunities for parallel, global
communication. When VisIt’s parallel compute engine uses dynamic load balancing, the
master process acts as an executive that assigns work as needed to each processor. When a
processor needs work, it requests a domain from the executive and it processes the domain
in its visualization pipeline until the results for the domain have been calculated. After
that, the processor asks the executive for another domain. In dynamic load balancing, each
processor can be working on very different operations so there is no opportunity to do
global communication. VisIt attempts to do dynamic load balancing unless any one of the
filters in its visualization pipeline requires global communication, in which case static
load balancing must be used. This means that the places where global communication can
occur are few.

VisIt’s database plug-in interfaces provide the ActivateTimestep method as a
location where global, parallel communication can be performed safely. If your parallel
database reader needs to do parallel communication such as broadcasting metadata to all
processors, or figuring out data extents in parallel then that code must be added in the
ActivateTimestep method.
Advanced topics 142

Chapter 5 Instrumenting a simulation
code

1.0 Overview

Some simulation programs include a runtime graphics package, which creates
visualizations of simulation results during execution. Runtime graphics have a number of
advantages over writing out graphics files that can be visualized after the fact by a
visualization tool. First of all, graphics files are written far less frequently than the
simulation calculates its data because of time and disk space limitations. Secondly,
runtime graphics packages have access to all of the variables that a simulation calculates,
whereas a graphics file usually contains a small subset of the variables. Finally, by using
runtime graphics, users can visualize simulation results as the simulation executes and the
user can possibly intercede to change how the simulation runs.

VisIt provides a library that can be used by simulation codes in order to expose data to
VisIt, allowing you to use VisIt as a runtime graphics package. This chaper explains in
detail the steps required to instrument your C or Fortran simulation so that VisIt can access
its data for the purpose of runtime graphics.

2.0 Architecture

Parallel simulations often use a technique called domain decomposition (see Figure 5-1)
to break up the simulated problem into smaller pieces called domains. We’ve learned in
earlier chapters how to store data from different domains in a variety of file formats such
as Silo and VTK. Simulations often write out 1 domain file per processor, and VisIt
Overview Getting Data into VisIt Manual 143

Instrumenting a simulation code

processes all of the individual domain files to produce a unified picture with contributions
from all of the relevant domains.

Simulation Data files

processor 3

processor 2

processor 1

processor 0

Figure 5-1: Simulation writing data files in parallel

VisIt has a distributed architecture which allows various functions to be grouped into
cooperating processes. VisIt’s compute engine is particularly relevant when discussing
runtime graphics. The compute engine is responsible for reading data from files,
generating plots from the data, and sending the plots to VisIt’s viewer where the plot can
be displayed. In short, VisIt’s compute engine is the VisIt component that handles all of
the data. Figure 5-2 depicts VisIt’s compute engine reading data files in parallel.

VisIt GUI and Viewer Compute engine Data files

processor 3

processor 2

processor 1

processor 0

Figure 5-2: VisIt’s compute engine reads data files in parallel and sends data to the viewer
component.
144 Architecture

Instrumenting a simulation code

VisIt compute engine library

VSIL Data access code

VisIt compute engine library

VSIL Data access code

VisIt compute engine library

VSIL Data access code

VisIt users often import their data via files that have been written to disk, making data
visualization and analysis a post-processing step. VisIt’s libsim simulation
instrumentation library can be inserted into a simulation program to make the simulation
act in many ways like a VisIt compute engine. The libsim library, coupled with some
data access code that you must write and build into your simulation, gives VisIt’s data
processing routines access to the simulation’s calculated data without the need for the
simulation to write files to disk (see Figure 5-3). An instrumented simulation may begin
its processing while periodically listening for connections from an instance of VisIt using
libsim. When libsim detects that VisIt wants to connect to the simulation so its data
can be visualized, libsim loads its dynamic runtime library that contains the VisIt
compute engine’s data processing functions. Once the runtime is loaded, your simulation
connects back to VisIt’s viewer and requests for plots and data can be made as though your
simulation was a regular VisIt compute engine.

When a request for data comes in from VisIt’s viewer, your simulation is asked to provide
data via some data access code. Data access code consists of a set of callback functions
that your simulation must provide in order to serve data to VisIt. Data access code is
written in the same language as your simulation program and it serves as the “glue” that
allows the runtime to access your simulation’s data so it can be processed and plotted in
VisIt. Though the initial portion of this chapter illustrates how to integrate libsim
routines into your simulation, much of the rest of this chapter will be devoted to writing
data access code.

VisIt GUI and Viewer Instrumented Simulation

processor 3
data

processor 2
data

processor 1
data

processor 0

VisIt compute engine library

libsim Data access code

data

Figure 5-3: VisIt getting data from an instrumented parallel simulation
Architecture 145

Instrumenting a simulation code

3.0 Using libsim

The first step in instrumenting a simulation so it can provide data to VisIt is to add the
libsim library. The libsim library is responsible for listening for incoming VisIt
connections, connecting to them, and for dynamically loading the runtime that allows the
simulation to act as a VisIt compute engine. The libsim library can listen for input from
incoming VisIt instances, establish connections to VisIt, and respond to console input or
input from VisIt. As one might imagine, this implies that your simulation’s main loop will
need to be changed so it calls critical routines from libsim. Restructuring the main loop
will be covered shortly. The code examples herein will start from a simple simulation
skeleton that builds on itself until a working simulation is created.

3.1 Getting libsim

As of VisIt 2.0, the libsim library comes in two flavors: SimV1 and SimV2. SimV1 is
the older version of libsim and is covered in previous versions of this manual. SimV2 is
the newer form of libsim and it provides a function-based API for manipulating data
instead of one based on C-structs as in SimV1. SimV2 also includes features not present in
SimV1 such as support for Adaptive Mesh Refinement (AMR) meshes, Constructive Solid
Geometry (CSG) meshes, material species, and many more. The remainder of this manual
will target libsim’s SimV2 interface.

Both versions of libsim are located in the libsim directory, which is installed under the
version and platform directories when VisIt is installed. There are V1 and V2
subdirectories for SimV1 and SimV2, respectively. For example, if you are building
against a Linux/Intel version of VisIt 2.0 installed in /usr/local/apps/visit then the full path
to the libsim directory would be: /usr/local/apps/visit/2.0.0/linux-intel/libsim/V2. The V2
subdirectory contains include and lib directories that give you easy access to the
required C and Fortran include files and static libraries.

The files that you need in order to instrument a simulation vary depending on the language
that you used to write your simulation.

Language Include files

C/C++ VisItControlInterface_V2.h VisItDataInterface_V2.h

Fortran visitfortransimV2interface.inc

3.2 Building in libsim support

Before getting started, it is important to note that libsim is currently only available on
Linux and MacOS X platforms. A Windows implementation requires additional porting
and has not yet been completed.
146 Using libsim

Instrumenting a simulation code
When you write your simulation in C or C++, you must include
VisItControlInterface_V2.h and VisItDataInterface_V2.h in your
simulation’s source file. In addition, you must add libsimV2.a to the list of libraries
against which your program is linked. When your simulation is written in Fortran, you
must also take care to include visitfortransimV2interface.inc in your
Fortran simulation code to assure that the compiler knows the names of the functions that
come from libsim. You must link your Fortran program against both libsimV2.a and
libsimV2f.a.

Listing 5-4: Including libsim header file in C-Language simulation.

#include <VisItControlInterface_V2.h>
int main(int argc, char **argv)
{

return 0;
}

Listing 5-5: Including libsim header file in Fortran-Language simulation.

program main
implicit none
include “visitfortransimV2interface.inc”
stop
end

Using libsim on UNIX platforms, such as Linux, will most likely require you to link
your simulation with the dynamic loader library (-ldl) because libsim uses the system’s
dlopen function to dynamically load its runtime library.

3.3 Initialization

This section discusses the changes to the main program that are involved when
instrumenting a simulation code with libsim. The following examples are cartoonish
but they show how the main program evolves from something very simple into a main
program that can serve as the skeleton of a simulation that can act as a VisIt compute
engine. Once you adapt one of your programs to use libsim, it is easy to use that
program as a template for future simulations. Additions to the example programs in this
section will be underlined unless otherwise stated.

The C example programs use a struct called simulation_data that represents the
simulation’s global state and it could contain other data such as the mesh being simulated.
The simulation_data struct is used as a proxy for your simulation’s global state and
Using libsim 147

Instrumenting a simulation code

will later be used to show how the simulation state can be passed to data access callback
functions. The following listing shows the contents of the simulation_data struct.

Listing 5-6: sim1.c: C-Language simulation example before adding libsim

/* SIMPLE SIMULATION SKELETON */
typedef struct
{

 int cycle;
 double time;
 int runMode;
 int done;

#ifdef PARALLEL
 int par_rank;
 int par_size;

#endif
} simulation_data;

void simulate_one_timestep(simulation_data *sim)
{

/* Simulate 1 timestep. */
}
int main(int argc, char **argv)
{

simulation_data sim;
simulation_data_ctor(&sim);
read_input_deck(&sim);
do
{

simulate_one_timestep(&sim);
write_vis_dump(&sim);

} while(!sim.done);
simulation_data_dtor(&sim);
return 0;

}

3.3.1 Setting up the environment and creating a .sim2 file

The first libsim functions called when instrumenting a simulation influence the
behavior of libsim’s VisItSetupEnvironment function, which is the first
required function that must be called. You may want to call other functions such as
148 Using libsim

Instrumenting a simulation code

VisItOpenTraceFile, VisItSetDirectory, or VisItSetOptions before
calling VisItSetupEnvironment.

Function Description

VisItOpenTraceFile Open a trace file that contains a trace of all of
SimV2’s function calls. Trace files are highly
recommended because they contain informa-
tion about every action attempted by libsim
and they are invaluable for determining the
causes of various types of failure such as
when VisIt can’t connect to the simulation.

VisItSetDirectory Set the path to the top level directory where
VisIt is installed (e.g. /path/to/visitdir). This is
the directory that contains the bin/visit launch
script. If you don’t call this function, libsim
will use whichever visit executable is in your
path.

VisItSetOption Pass a string containing command line argu-
ments to the visit launch script when it is
invoked by VisItSetupEnvironment.
This is useful if you need to pass a version
string or some other arguments to the visit
launch script.

After calling optional functions, the first required function that must be called when
instrumenting a simulation is the VisItSetupEnvionment function. The
VisItSetupEnvironment function adds important visit-related environment
variables to the environment, ensuring that VisIt has the environment that it needs to find
its plug-ins, etc.

Step 2 in instrumenting a simulation is to call the
VisItInitializeSocketAndDumpSimFile function, which initializes the
libsim library and writes out a .sim2 file to your ~/.visit/simulations directory in your
home directory. A .sim2 file is a small text file that contains details that tell VisIt how to
connect to your running simulation. The .sim2 file contains such information as the name
of the computer where your simulation is running, the port that should be used to connect
to the simulation, and the key that should be returned when you successfully connect to
the simulation. The first argument to the
VisItInitializeSocketAndDumpSimFile function is the base name that will be
used to construct a filename for the .sim2 file. The name for a .sim2 file is typically the
specified file base with the time that the simulation started appended to it, allowing you to
distinguish between multiple simulations that may be running concurrently. The second
argument is a comment that can be used to further identify your simulation. The third
argument contains the directory path to where your simulation was started, though it is
Using libsim 149

Instrumenting a simulation code

mainly reserved for future use. The fourth argument, which is optional, contains the path
and name to the simulation’s input file. The fifth argument, which is also optional,
contains the name of an XML user interface file that VisIt can use to create a custom user
interface for controlling your simulation. The final argument is reserved and you should
pass NULL.

Listing 5-7: sim2.c: C-Language simulation example including libsim initialization

/* SIMPLE SIMULATION SKELETON */
#include <VisItControlInterface_V2.h>
void simulate_one_timestep(simulation_data *sim)
{

/* Simulate 1 timestep. */
}
int main(int argc, char **argv)
{

simulation_data sim;
simulation_data_ctor(&sim);

/* Initialize environment variables. */
VisItSetupEnvironment();
/* Write out .sim file that VisIt uses to connect. */
VisItInitializeSocketAndDumpSimFile("simname",

"Simulation Comment", "/path/to/where/sim/was/started",
NULL, NULL, NULL);

read_input_deck(&sim);
do
{

simulate_one_timestep(&sim);
write_vis_dump(&sim);

} while(!sim.done);
simulation_data_dtor(&sim);
return 0;

}

3.3.2 Parallel initialization

Parallel programs often require global communication to ensure that all processors are
working on the same activity. The libsim library requires periodic global
communication to ensure that all processors service the same plot requests from VisIt’s
viewer process. Using libsim in a parallel simulation requires a little bit of extra setup.
The code in Listing 5-8 differs from the previous code listing in three important ways,
each labelled in the listing using comments: CHANGE 1, CHANGE 2, CHANGE 3,
respectively.

The first change in the code listing adds two broadcast functions that libsim will use
when it needs to broadcast integers or strings. The two callback functions from the code
150 Using libsim

Instrumenting a simulation code

listing can most likely be copied directly into your simulation. Note that the callback
functions are conditionally compiled since they are not needed in a serial simulation.

The second change in Listing 5-8 includes initialization of the MPI library, par_rank,
par_size, and libsim. The par_rank and par_size integers are members of the
simulation_data struct. Once MPI is initialized, the processor rank and size is
queried and stored in par_rank and par_size so they can be used to initialize
libsim as well as later for control flow. Various routines that we’ll add in future code
examples will use the par_rank, and par_size integers for control flow because
processor 0 needs to behave a little differently from the rest of the processors because it
communicates with VisIt’s viewer. Note that the broadcast functions defined in the first
change are registered with libsim, using VisItSetBroadcastIntFunction and
VisItSetBroadcastStringFunction, so libsim can broadcast integers and
strings among processors. Once the broadcast callbacks are installed, par_rank and
par_size are used to tell libsim how many processors there are and whether the
simulation is parallel using the VisItSetParallel and VisItSetParallelRank
functions.

Listing 5-8: sim2p.c: C-Language simulation example including parallel libsim initialization

/* SIMPLE PARALLEL SIMULATION SKELETON */
#include <VisItControlInterface_V2.h>
#include <mpi.h>
void simulate_one_timestep(simulation_data *sim)
{

/* Simulate 1 timestep. */
}
/* CHANGE 1 */
#ifdef PARALLEL
static int visit_broadcast_int_callback(int *value, int sender)
{

return MPI_Bcast(value, 1, MPI_INT, sender, MPI_COMM_WORLD);
}
static int visit_broadcast_string_callback(char *str, int len,

int sender)
{

return MPI_Bcast(str, len, MPI_CHAR, sender, MPI_COMM_WORLD);
}
#endif

int main(int argc, char **argv)
{

simulation_data sim;
simulation_data_ctor(&sim);

/* Initialize environment variables. */
VisItSetupEnvironment();

/* CHANGE 2 */
#ifdef PARALLEL

/* Initialize MPI */
Using libsim 151

Instrumenting a simulation code
MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &sim.par_rank);
MPI_Comm_size (MPI_COMM_WORLD, &sim.par_size);

/* Install callback functions for global communication. */
VisItSetBroadcastIntFunction(visit_broadcast_int_callback);
VisItSetBroadcastStringFunction(visit_broadcast_string_callback);
/* Tell libsim whether the simulation is parallel. */
VisItSetParallel(sim.par_size > 1);
VisItSetParallelRank(sim.par_rank);

#endif

/* Write out .sim file that VisIt uses to connect. Only do it
* on processor 0.
*/
/* CHANGE 3*/
if(sim.par_rank == 0)
{

VisItInitializeSocketAndDumpSimFile("simname",
"Simulation Comment", "/path/to/where/sim/was/started",
NULL, NULL, NULL);

}
read_input_deck(&sim);
do
{

simulate_one_timestep(&sim);
write_vis_dump(&sim);

} while(!sim.done);
simulation_data_dtor(&sim);

#ifdef PARALLEL
MPI_Finalize();

#endif

return 0;
}

3.4 Restructuring the main loop

Given the example code from the previous example, the do..while loop that serves as
the simulation’s main loop can be separated out into a new function called mainloop. It
is possible to add calls to libsim into an existing simulation main loop using polling but
it is not as clean as restructuring the main loop.

3.4.1 Creating a mainloop function

Moving the do..while loop into a separate mainloop function will help in the next
stage where additional libsim functions will be called. If your simulation does not have
a well-defined function for simulating one time step, as in the previous example code, then
152 Using libsim

Instrumenting a simulation code
it is strongly recommended that you refactor your simulation so that code to simulate 1
time can be called from mainloop using either a single function or a small block of
code. The next examples assume that the simulation provides a function called:
simulate_one_timestep that can be called over and over again to perform one
cycle of the simulation.

Listing 5-9: sim3.c: C-Language simulation example with a mainloop function.

/* SIMPLE SIMULATION SKELETON */
#include <VisItControlInterface_V2.h>
void simulate_one_timestep(simulation_data *sim)
{

/* Simulate 1 timestep. */
}

void mainloop(simulation_data *sim)
{

do
{

simulate_one_timestep(sim);
write_vis_dump(sim);

} while(!sim->done);
}

int main(int argc, char **argv)
{

simulation_data sim;
simulation_data_ctor(&sim);

/* Initialize environment variables. */
VisItSetupEnvironment();
/* Write out .sim2 file that VisIt uses to connect. */
VisItInitializeSocketAndDumpSimFile("simname",

“Simulation Comment", "path/to/where/sim/was/started", NULL,
NULL, NULL);

/* Read input problem setup, geometry, data. */
read_input_deck(&sim);

/* Call the main loop. */
mainloop(&sim);

simulation_data_dtor(&sim);
return 0;

}

3.4.2 Adding libsim functions to mainloop

Now that the main loop of the program has been extracted from the main piece of the
simulation, we can perform an even larger change on the mainloop function. After
Using libsim 153

Instrumenting a simulation code
completing these changes, you will have the first simulation in the series that will be able
to accept VisIt connections. It will take more changes before the simulation can provide
any data to VisIt. The following code example keeps only the do..while loop and the
call to simulate_one_timestep; everything else is new. The structure of the
mainloop function will be very similar between simulations since most of the code is
devoted to detecting input from VisIt using libsim and doing the right thing based on
that input.

Listing 5-10: sim4.c: C-Language simulation example with fully instrumented mainloop function.

void mainloop(simulation_data *sim)
{

int blocking, visitstate, err = 0;

do
{

blocking = (sim->runMode == VISIT_SIMMODE_RUNNING) ? 0 : 1;
/* Get input from VisIt or timeout so the simulation can run. */
visitstate = VisItDetectInput(blocking, -1);

/* Do different things depending on the output from
VisItDetectInput. */
if(visitstate <= -1)
{

fprintf(stderr, "Can’t recover from error!\n");
err = 1;

}
else if(visitstate == 0)
{

/* There was no input from VisIt, return control to sim. */
simulate_one_timestep(sim);

}
else if(visitstate == 1)
{

/* VisIt is trying to connect to sim. */
if(VisItAttemptToCompleteConnection())

fprintf(stderr, "VisIt connected\n");
else

fprintf(stderr, "VisIt did not connect\n");
}
else if(visitstate == 2)
{

/* VisIt wants to tell the engine something. */
sim->runMode = VISIT_SIMMODE_STOPPED;
if(!VisItProcessEngineCommand())
{

/* Disconnect on an error or closed connection. */
VisItDisconnect();
/* Start running again if VisIt closes. */
sim->runMode = VISIT_SIMMODE_RUNNING;

}
}
154 Using libsim

Instrumenting a simulation code

} while(!sim->done && err == 0);
}

There are several functions from libsim that are called in the new mainloop function.
The first libsim function that we call is the VisItDetectInput function, which
listens for inbound VisIt connections on a port that was allocated when libsim was
initialized. The VisItDetectInput function can be called so that it blocks
indefinitely, or so that it times out after a brief period. When the simulation starts up,
VisItDetectInput is called in non-blocking mode so that it times out. When a
timeout occurs, the VisItDetectInput function returns zero and we call the
simulate_one_timestep function. Since the VisItDetectInput function will
continue to time out until VisIt connects to it, this augmented main loop allows the
simulation to keep iterating, while still periodically listening for inbound VisIt
connections.

When VisItDetectInput returns
one, there is an inbound VisIt connection
to which the simulation should try and
connect. In this situation, we call the
VisItAttemptToCompleteConne
ction function, which is responsible
for two crucial actions. The first action is
to dynamically load the simulation
runtime library, which is the piece of the
puzzle that allows the simulation to
perform compute engine operations.
After loading the runtime, the
VisItAttemptToCompleteConne
ction function tries to connect back to
VisIt’s viewer. In the event of a
successful connection, the viewer and the
simulation will be connected and the
simulation will appear in the GUI’s
Compute Engines and Simulation
windows (see Figure 5-11).

When VisItDetectInput returns
two, VisIt’s viewer is sending commands
to generate plots to the simulation. The
simulation can handle commands from
the viewer simply by calling the
VisItProcessEngineCommand

function. The VisItProcessEngineCommand function reads the commands coming
from the viewer and uses them to make requests of the runtime, which ends up requesting
and processing the data returned from your data access code. If the

Figure 5-11: Simulation window
Using libsim 155

Instrumenting a simulation code

VisItProcessEngineCommand function fails for any reason, it usually means that
either VisIt quit or the communication link between VisIt and the simulation was severred.
When the simulation can no longer communicate with VisIt, it is important for it to call
libsim’s VisItDisconnect function. The VisItDisconnect function resets
libsim so it is ready to once again accept a new incoming VisIt connection. Note that
after calling VisItDisconnect, we also set the runMode variable to ensure that the
simulation begins to again run autonomously.

3.4.3 Setting up mainloop for a parallel simulation

In VisIt’s parallel compute engine, only the first processor, processor 0, communicates in
any way with VisIt’s viewer. When requests for plots come in, processor 0 broadcasts the
requests to all of the other processors so all can begin working on the request. Instead of
calling VisItProcessEngineCommand directly in a parallel simulation, you will
have to add code to ensure that all worker processors also call
VisItProcessEngineCommand when needed. Listing 5-12 shows how instead of
calling VisItProcessEngineCommand directly, you can call it and broadcast the
appropriate cues to other processors, ensuring they also process input from VisIt’s
viewer. Note that command communication also requires calling the
VisItSetWorkerProcessCallback function and registering a worker process
callback to be used in command communication.

Listing 5-12: sim4p.c: C-Language simulation example with fully instrumented parallel mainloop
function.

#define VISIT_COMMAND_PROCESS 0
#define VISIT_COMMAND_SUCCESS 1
#define VISIT_COMMAND_FAILURE 2

/* Helper function for ProcessVisItCommand */
static void BroadcastWorkerCommand(int *command)
{
#ifdef PARALLEL

MPI_Bcast(command, 1, MPI_INT, 0, MPI_COMM_WORLD);
#endif
}
/* Callback involved in command communication. */void
WorkerProcessCallback()
{

int command = VISIT_COMMAND_PROCESS;
BroadcastWorkerCommand(&command);

}
/* Process commands from viewer on all processors. */
int ProcessVisItCommand(simulation_data *sim)
{

int command;
if (sim->par_rank == 0)
{

int success = VisItProcessEngineCommand();
if (success)
156 Using libsim

Instrumenting a simulation code

{
command =
VISIT_COMMAND_SUCCESS;
BroadcastWorkerCommand(&command
); return 1; }

else
{

command = VISIT_COMMAND_FAILURE;
BroadcastWorkerCommand(&command)
; return 0;

}
}
else
{

/* Note: only through the WorkerProcessCallback callback
* above can the rank 0 process send a VISIT_COMMAND_PROCESS
* instruction to the non-rank 0 processes. */
while (1)
{

BroadcastWorkerCommand(&command)
; switch (command)
{
case VISIT_COMMAND_PROCESS:

VisItProcessEngineCommand();
break;

case VISIT_COMMAND_SUCCESS:
return 1;

case VISIT_COMMAND_FAILURE:
return 0;

}
}

}
return 1;

}

/* New function to contain the program’s main loop. */
void mainloop(simulation_data *sim)
{

int blocking, visitstate, err = 0;

do
{

blocking = (sim->runMode == VISIT_SIMMODE_RUNNING) ? 0 : 1;
/* Get input from VisIt or timeout so the simulation can run. */
if(sim->par_rank == 0)

visitstate = VisItDetectInput(blocking, -1);
MPI_Bcast(visitstate, 1, MPI_INT, 0, MPI_COMM_WORLD);

/* Do different things depending on the output from
VisItDetectInput. */
if(visitstate >= -5 && visitstate <= -1)
{

fprintf(stderr, "Can’t recover from error!\n");
err = 1;
Using libsim 157

Instrumenting a simulation code

}
else if(visitstate == 0)
{

/* There was no input from VisIt, return control to sim. */
simulate_one_timestep(sim);

}
else if(visitstate == 1)
{

/* VisIt is trying to connect to sim. */
if(VisItAttemptToCompleteConnection())
{

fprintf(stderr, "VisIt connected\n");
VisItSetWorkerProcessCallback(WorkerProcessCallback);

}
else

fprintf(stderr, "VisIt did not connect\n");
}
else if(visitstate == 2)
{

/* VisIt wants to tell the engine something. */
sim->runMode = VISIT_SIMMODE_STOPPED;
if(!ProcessVisItCommand(sim))
{

/* Disconnect on an error or closed connection. */
VisItDisconnect();
/* Start running again if VisIt closes. */
sim->runMode = VISIT_SIMMODE_RUNNING;

}
}

} while(!sim->done && err == 0);
}

3.5 Using libsim in a Fortran simulation

So far, the examples for using libsim have been expressed in the C programming
language. It is also possible to instrument Fortran simulations so they can serve their data
up to VisIt. In SimV2, the function calls for instrumenting a Fortran simulation are nearly
identical to the function calls used for C simulations. This subsection will list the entire
code skeleton for a libsim-instrumented Fortran simulation since the transitions that
evolved a simple program into one that can connect to VisIt have already been
demonstrated in C. The principles for instrumenting a Fortran program are the same. If
you want to inspect the intermediate steps involved in converting a simple Fortran
simulation program, examine the sample programs that accompany this book.

The primary source of differences between the following code listing and the code in
Listing 5-10 result from Fortran’s treatment of string variables. Strings are not always
null-terminated in Fortran as they are in C, so any libsim function that takes string
arguments will require the length of each string argument to be passed as well. The length
158 Using libsim

Instrumenting a simulation code
 argument immediately follows any string argument in the argument list of a libsim
function.

The Fortran interface to libsim differs in another significant way; it requires certain
functions to be defined in order to link successfully. The libsim library uses callback
functions, or functions that must be provided by your simulation, in order to perform
certain operations. Since the Fortran programming language lacks pointers, it is not
possible to pass the address of a function that will perform a certain action to libsim.
The Fortran interface to libsim, called libsimf, gets around this limitation by
registering internal callback functions, which reference Fortran functions that must be
provided by your simulation. The data access functions requried to pass simulation data to
the libsim runtime are handled using the same method, thus instrumenting a Fortran
simulation initially requires more steps than instrumenting a C simulation. The number of
steps to instrument simulations in either language is ultimately the same.

Listing 5-13: fsim4.f: Fortran language simulation example with fully instrumented mainloop
function.

c---
c Program: main
c
c---

program main
implicit none
include "visitfortransimV2interface.inc"

ccc local variables
integer err

err = visitsetupenv()
err = visitinitializesim("fsim4", 5,

. "Fortran prototype simulation connects to VisIt", 46,

. "/no/useful/path", 15,

. VISIT_F77NULLSTRING, VISIT_F77NULLSTRINGLEN,

. VISIT_F77NULLSTRING, VISIT_F77NULLSTRINGLEN,

. VISIT_F77NULLSTIRNG, VISIT_F77NULLSTRINGLEN)
call mainloop()
stop
end

c---
c mainloop
c---

subroutine mainloop()
implicit none
include "visitfortransimV2interface.inc"

ccc local variables
integer visitstate, result, runflag, blocking

c main loop
runflag = 1
do 10
Using libsim 159

Instrumenting a simulation code
if(runflag.eq.1) then
blocking = 0

else
blocking = 1

endif

visitstate = visitdetectinput(blocking, -1)

if (visitstate.lt.0) then
goto 1234

elseif (visitstate.eq.0) then
call simulate_one_timestep()

elseif (visitstate.eq.1) then
runflag = 0
result = visitattemptconnection()
if (result.eq.1) then

write (6,*) ’VisIt connected!’
else

write (6,*) ’VisIt did not connect!’
endif

elseif (visitstate.eq.2) then
runflag = 0
if (visitprocessenginecommand().eq.0) then

result = visitdisconnect()
runflag = 1

endif
endif

10 continue
1234 end

subroutine simulate_one_timestep()
c Simulate one time step

write (6,*) ’Simulating time step’
call sleep(1)
end

The above code listing lists the functions from libsimV2f that must be called from the
program’s main function and main loop for a serial simulation. When instrumenting a
Fortran simulation using libsimV2f, you must define the following functions in order
to link your program successfully:

Required subroutine/function Argument types

subroutine visitcommandcallback (cmd, lcmd, intdata,

floatdata, stringdata, lstringdata)

character*8 cmd,
stringdata

integer lcmd,
lstringdata, intdata

real floatdata

integer function visitbroadcastintfunction(value, sender) integer value, sender
160 Using libsim

Instrumenting a simulation code

Required subroutine/function Argument types

integer function visitbroadcaststringfunction(str, lstr, sender) character*8 str

integer lstr, sender

subroutine visitworkerprocesscallback ()

These functions are primarily for using libsim with a parallel simulation but they must
always be defined. Extending a parallel Fortran simulation will be covered shortly. In
addition, there are functions related to data access code that must be defined in order to get
your Fortran simulation to link successfuly. Look at the fsim4.f source code file for
examples of which functions must also be defined. Those additional functions will be
covered later in this chapter.

3.6 Using libsim in a parallel Fortran simulation

A parallel Fortran simulation’s mainloop function should look very similar to its serial
counterpart in terms of how code is organized. Once you have adapted your simulation so
it can be instrumented with libsim, it is possible to make further changes that allow
each processor to serve data to VisIt in parallel. There are many changes that need to
happen in order to instrument a parallel simulation so the process will be broken into
stages. The changes begin with telling VisIt the number of processors and the rank of the
current processor within the group before the call to the visitinitializesim
function. You can provide this information to VisIt by calling MPI’s MPI_COMM_RANK
and MPI_COMM_SIZE functions and then passing the resulting rank and size data to the
visitsetparallel and visitsetparallelrank functions. Once the rank and
size data have been given to libsim, the next change is to ensure that only the master, or
rank zero, process calls the visitinitializesim function from libsim. Only the
master process should call the visitinitializesim function to ensure that only one
“.sim2” file is created.

Listing 5-14: fscalarp.f: Fortran language simulation example for parallel initialization.

c--
c Program: main
c
c--

program main
implicit none
include "visitfortransimV2interface.inc"
include "mpif.h"

ccc local variables
integer err

ccc PARALLEL state common block
integer par_rank, par_size
common /PARALLEL/ par_rank, par_size
save /PARALLEL/
Using libsim 161

Instrumenting a simulation code

call MPI_INIT(err)

c Determine the rank and size of this MPI task so we can tell
c VisIt’s libsim about it.

call MPI_COMM_RANK(MPI_COMM_WORLD, par_rank, err)
call MPI_COMM_SIZE(MPI_COMM_WORLD, par_size, err)
if(par_size.gt.1) then

err = visitsetparallel(1)
endif
err = visitsetparallelrank(par_rank)

err = visitsetupenv()
c Have the master process write the sim file.

if(par_rank.eq.0) then
err = visitinitializesim("fscalarp", 8,

. "Demonstrates scalar data access function", 40,

. "/no/useful/path", 15,

. VISIT_F77NULLSTRING, VISIT_F77NULLSTRINGLEN,

. VISIT_F77NULLSTRING, VISIT_F77NULLSTRINGLEN)
endif

call mainloop()

call MPI_FINALIZE(err)
stop
end

The next step in instrumenting a parallel Fortran simulation is to change the mainloop
function. The first change that you must make is to ensure that only the master process
calls visitdetectinput. Remember that only the master process talks to VisIt’s
viewer process so the visitdetectinput function should not be called by worker
processes. However, the workers need to know the instructions that came from the viewer
so we must insert an MPI broadcast function to ensure that all processes get the value
sent from the viewer to the master process. In addition the
visitprocessenginecommand function must be exchanged for a function that can
call visitprocessenginecommand on all processes. For now, let’s call that new
function processvisitcommand.

Listing 5-15: fscalarp.f: Fortran language simulation example for parallel mainloop function.

c---
c mainloop
c---

subroutine mainloop()
implicit none
include "mpif.h"
include "visitfortransimV2interface.inc"

ccc functions
162 Using libsim

Instrumenting a simulation code
integer processvisitcommand
ccc local variables

integer visitstate, result, blocking, ierr
ccc SIMSTATE common block

integer runflag, simcycle
real simtime
common /SIMSTATE/ runflag,simcycle,simtime
save /SIMSTATE/

ccc PARALLEL state common block
integer par_rank, par_size
common /PARALLEL/ par_rank, par_size

c main loop
runflag = 1
simcycle = 0
simtime = 0
do 10

if(runflag.eq.1) then
blocking = 0

else
blocking = 1

endif

c Detect input from VisIt on processor 0 and then broadcast
c the results of that input to all processors.

if(par_rank.eq.0) then
visitstate = visitdetectinput(blocking, -1)

endif
call MPI_BCAST(visitstate,1,MPI_INTEGER,0,

. MPI_COMM_WORLD,ierr)

if (visitstate.lt.0) then
goto 1234

elseif (visitstate.eq.0) then
call simulate_one_timestep()

elseif (visitstate.eq.1) then
runflag = 0
result = visitattemptconnection()
if (result.eq.1) then

write (6,*) ’VisIt connected!’
else

write (6,*) ’VisIt did not connect!’
endif

elseif (visitstate.eq.2) then
runflag = 0
if (processvisitcommand().eq.0) then

result = visitdisconnect()
runflag = 1

endif
endif

10 continue
1234 end
Using libsim 163

Instrumenting a simulation code

Now that you have changed the mainloop function it is time to define the
processvisitcommand function. The processvisitcommand function is used
by the mainloop function as a replacement for the visitprocessenginecommand
function. The new processvisitcommand function must call the
visitprocessenginecommand function and it must do so in a way that ensures the
function is called on all processors. Since the processvisitcommand function is
completely new, you will probably be able to paste it into your simulation with few
changes.

Listing 5-16: fscalarp.f: Fortran language simulation example for parallel processvisitcommand
function.

c---
c processvisitcommand
c---

integer function processvisitcommand()
implicit none
include "mpif.h"
include "visitfortransimV2interface.inc"

ccc PARALLEL state common block
integer par_rank, par_size
common /PARALLEL/ par_rank, par_size
integer command, e, doloop, success, ret
integer VISIT_COMMAND_PROCESS
integer VISIT_COMMAND_SUCCESS
integer VISIT_COMMAND_FAILURE
parameter (VISIT_COMMAND_PROCESS = 0)
parameter (VISIT_COMMAND_SUCCESS = 1)
parameter (VISIT_COMMAND_FAILURE = 2)

if(par_rank.eq.0) then
success = visitprocessenginecommand()

if(success.gt.0) then
command = VISIT_COMMAND_SUCCESS
ret = 1

else
command = VISIT_COMMAND_FAILURE
ret = 0

endif

call MPI_BCAST(command,1,MPI_INTEGER,0,MPI_COMM_WORLD,e)
else

doloop = 1
2345 call MPI_BCAST(command,1,MPI_INTEGER,0,MPI_COMM_WORLD,e)

if(command.eq.VISIT_COMMAND_PROCESS) then
success = visitprocessenginecommand()

elseif(command.eq.VISIT_COMMAND_SUCCESS) then
ret = 1
doloop = 0

else
164 Using libsim

Instrumenting a simulation code
ret = 0
doloop = 0

endif
if(doloop.ne.0) then

goto 2345
endif

endif
processvisitcommand = ret
end

The alterations to the code that have been listed thus far are nearly enough to complete the
changes required for a parallel Fortran simulation to use libsim. The main program and
the mainloop function have been changed to support the extra processing that needs to
happen to ensure that all processors properly receive instructions from VisIt’s viewer.
However, there are some broadcast callback functions that must now be implemented to
ensure that libsim can communicate with all processors. The callback functions:
visitbroadcastintfunction, visitbroadcaststringfunction, and
visitworkerprocesscallback have to date been stub functions that did not do any
real work. When you instrument a parallel Fortran simulation, those callback functions
need to perform broadcasts so libsim can properly communicate with all processors.

Listing 5-17: fscalarp.f: Fortran language simulation example for parallel broadcast functions.

c--
c visitbroadcastintfunction
c--

integer function visitbroadcastintfunction(value, sender)
implicit none
include "mpif.h"
integer value, sender
integer IERR
call MPI_BCAST(value,1,MPI_INTEGER,sender,MPI_COMM_WORLD,ierr)
visitbroadcastintfunction = 0
end

c--
c visitbroadcaststringfunction
c--

integer function visitbroadcaststringfunction(str, lstr,
sender)
implicit none
include "mpif.h"
character*8 str
integer lstr, sender
integer IERR
call MPI_BCAST(str,lstr,MPI_CHARACTER,sender,MPI_COMM_WORLD,

. ierr)
visitbroadcaststringfunction = 0
end
Using libsim 165

Instrumenting a simulation code

c---
-c visitworkerprocesscallback
c--

subroutine visitworkerprocesscallback ()
implicit none
include "mpif.h"
integer c, ierr, VISIT_COMMAND_PROCESS
parameter (VISIT_COMMAND_PROCESS = 0)
c = VISIT_COMMAND_PROCESS
call MPI_BCAST(c,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
end

After making all of these changes, your parallel Fortran simulation should be ready to run
for the first time as an application to which VisIt can connect. You will not be able to
extract any data from your simulation just yet but you can begin to run connected to VisIt
and once you have that working you can begin to expose your data to VisIt.

3.7 Running an instrumented simulation

Once you’ve added libsim functions to your simulation and created a mainloop
function capable of connecting to VisIt, you can run your modified simulation. The current
libsim implementation uses the visit command in your path to determine where it
will find the libsim runtime library. The libsim runtime library is linked to its
dependent VisIt libraries and has an awareness of their location set via -rpath. So,
assuming libsim is able to locate its runtime library, the other VisIt libraries on which it
depends should load without issues. If you use a Linux version of VisIt 2.0.0 installed in
/usr/local/apps/visit then use the following commands to ensure that libsim can find the
libsim runtime library. However, this should only be necessary if VisIt is not in your
path.

Set VISIT to the directory where a version of VisIt is intalled
setenv VISIT /usr/local/apps/visit/2.0.0/linux-intel
env LD_LIBRARY_PATH=$VISIT/lib VISITPLUGINDIR=$VISIT/plugins ./sim

If you use a different version of VisIt or run VisIt on a platform other than Linux, make the
appropriate substitutions in the VISIT environment variable before trying to run. This is an
instance where you could also call VisItSetDirectory in your simulation, passing
/usr/local/apps/visit to make the proper VisIt environment be detected.

3.8 Connecting to an instrumented simulation from VisIt

Once you’ve successfully launched your simulation, you can attempt to connect to it using
VisIt. Open a terminal window and run VisIt. When VisIt comes up, open the File
selection window and browse to ~/.visit/simulations, the directory where .sim2 files are
stored. You should see a file in that directory with a .sim2 file extension. The .sim2 file was
166 Using libsim

Instrumenting a simulation code

created by your simulation when it started and called the
VisItInitializeSocketAndDumpSimFile function from libsim. The .sim2
file contains all of the information that VisIt needs to connect to your simulation. If you
open the .sim2 file in VisIt’s Main window, VisIt will initiate contact with your
simulation.

If VisIt is unable to connect to your simulation, you might see error messages like the
following from your simulation:

Simulating time step
Simulating time step
VisIt did not connect
Simulating time step
Simulating time step

Error messages such as those above appear in the terminal window where your simulation
was launched. The most common problem when VisIt cannot connect to a simulation is
that the simulation runtime library could not be loaded. This occurs when the environment
is not set, usually due to a failure by libsim to automatically detect the VisIt
environment. This happens most often if the visit command is not in your path. You can
find out more about this type of failure by examining libsim trace files. In the event that
libsim cannot detect the VisIt environment, you can set it explicitly using
LD_LIBRARY_PATH and VISITPLUGINDIR.

At this stage in instrumenting your simulation, if it was able to successfully create a
connection to VisIt then you will see the name of your simulation in the Compute
engines window and the Simulations window.

4.0 Writing data access code

If you have made it this far then you probably have a simulation that has been restructured
to use libsim. Once a simulation has been instrumented using libsim, it should be
possible for VisIt to connect to it. Adding the code to allow VisIt to connect to your
simulation is only the first part of instrumenting your simulation. The next phase in
instrumenting your simulation code is adding data access code to your simulation so the
simulation runtime library can access your simulation’s data.

Writing data access code is much like writing a database reader plug-in. It all starts with
writing a function to provide metadata to VisIt so that it knows the names of the meshes
and variables that are available for plotting. After your simulation is capable of telling
VisIt about its variables, the next step is to write functions that can pass your mesh or data
arrays to VisIt so they can be used in plots. If your data is not in a format that VisIt readily
supports, you can create a more VisIt-friendly representation of the data in the data access
functions and hand it off to VisIt.
Writing data access code 167

Instrumenting a simulation code

4.1 The VisIt Data Interface

VisIt relies on the VisIt Data Interface (VDI), a C header file containing the prototypes of
the functions that can be called to allocate and manipulate data objects that you pass back
to VisIt. These data objects contain references to your simulation data and are used to
construct the data structures that VisIt uses to plot your data.

It is important to note some significant differences between SimV1 and SimV2 in case you
are converting a SimV1 simulation to use SimV2. In SimV1, the VDI consisted of a set of
C structs that you would allocate, fill in, and pass back to VisIt. In SimV2, the structs have
been taken away and replaced with a set of functions for setting and getting properties on
the various data objects. This change eliminates a classic problem where VisIt would crash
when users did not properly fill out the fields of the C structure. SimV2 functions are also
redirected to their real implementation which is dynamically loaded from the SimV2
runtime library. This means that the data objects are more free to change and improve in
different versions of VisIt without affecting the client simulation or requiring that it relink
with a new SimV2 library.

The VDI C-Language header file is called VisItDataInterface_V2.h and it
defines the types and functions that are used when creating objects that pass data to VisIt.
The header file is installed with the binary VisIt distribution. If a Linux version of VisIt
2.0.0 was installed in /usr/local/apps/visit then the header file would be located in
/usr/local/apps/visit/2.0.0/linux-intel/include/visit/libsim/V2/include. Of course, the actual
path depends on where VisIt was installed, the version of VisIt that was installed, and the
platform.

If you are writing your simulation in Fortran then the VisItDataInterface_V2.h
header file will be of no consequence to you. Everything you need to instrument a Fortran
simulation code is located in visitfortransimV2interface.inc, the same file
that you’ve already used to instrument your simulation so far. Fortran simulations follow
the same paradigm as C simulations but call functions with slightly shorter names since
function names in Fortran are often limited to 31 characters. When possible, the function
names are either the same as in C, albeit with underscores ‘_’ removed, and use all lower-
case letters.

4.2 How data access functions are called

VisIt data access functions are registered with libsim using special callback registration
functions, defined in VisItControlInterface_V2.h. There is one callback
registration function per data access function. In the C version of libsim, you pass the
function pointer to be called when a particular data access callback function is needed.
You may also pass user-defined data that will be passed to the data access callback
function so the function can be aware of your application’s data without using global
variables. Calling these functions is not necessary when writing Fortran simulations
Writing data access code 168

Instrumenting a simulation code
because they are called already in the simV2f library, which imposes a requirement for
specific data access callback names: visitgetmetadata, visitgetmesh, etc.

Function Descripion

VisItSetGetMetaData Installs callback function that returns simula-
tion metadata.

VisItSetGetMesh Installs a callback function that returns mesh
data.

VisItSetGetMaterial Installs a callback function that returns mate-
rial data.

VisItSetGetSpecies Installs a callback gunction that returns spe-
cies data.

VisItSetGetVariable Installs a callback function that returns vari-
able data (scalars, vectors, tensors, and so on).

VisItSetGetMixedVariable Installs a callback function that returns mixed
variable data.

VisItSetGetCurve Installs a callback function that returns curve
data.

VisItSetGetDomainList Installs a callback function that returns a
domain list.

VisItSetGetDomainBound-
aries

Installs a callback function that returns
domain boundary information.

VisItSetGetDomainNesting Installs a callback function that returns
domain nesting information.

When VisIt opens the .sim2 file corresponding to your running simulation, VisIt knows
that the data will come from a simulation because the .sim2 file is opened by the SimV2
database reader plug-in. The SimV2 plug-in is a special VisIt database reader plug-in that
uses the functions in the SimV2 runtime library to access data from your simulation.
When the SimV2 runtime is loaded into your simulation and VisIt tells the simulation to
make a plot, the request ends up in the SimV2 database reader plug-in. When the SimV2
plug-in wants to read metadata, for example, it invokes your simulation’s metadata
callback function to retrieve metadata. Once your function returns a populated metadata
object, created by calling SimV2 functions, the SimV2 plug-in transcribes the metadata
from your metadata object into the avtDatabaseMetaData object that VisIt uses.
Other data access callbacks follow the same pattern.
Writing data access code 169

Instrumenting a simulation code
4.3 Making data access functions available

The previous sections have established the importance of data access callback functions
and the functions that register them. Now, it is time to see how and when the data access
callback functions are registered. Since the data access callback function are ultimately
used by the SimV2 runtime library, they cannot be registered until after VisIt connects to
your simulation since that is when the SimV2 runtime is loaded. Consequently, the
functions that register data access callback functions must be called after a successful call
to VisItAttemptToCompleteConnection. In order for your simulation to return
data, you must register, at a minimum, the callback functions for returning metadata. In
this example, note how VisItSetGetMetaData is called after a successful call to
VisItAttemptToCompleteConnection.

Listing 5-18: sim5.c: C-Language example for making a data access function available.

#include <VisItDataInterface_V2.h>

visit_handle
SimGetMetaData(void *cbdata)
{

visit_handle md = VISIT_INVALID_HANDLE;
simulation_data *sim = (simulation_data *)cbdata;

/* Create metadata with no variables. */
if(VisIt_SimulationMetaData_alloc(&md) == VISIT_OKAY)
{

/* Fill in the metadata. */
}

return md;
}

void mainloop(simulation_data *sim)
{

int blocking, visitstate, err = 0;

do
{

blocking = (sim->runMode == VISIT_SIMMODE_RUNNING) ? 0 : 1;
/* Get input from VisIt or timeout so the simulation can run. */
visitstate = VisItDetectInput(blocking, -1);

/* Do different things depending on the output from
VisItDetectInput. */
if(visitstate <= -1)
{

fprintf(stderr, "Can’t recover from error!\n");
err = 1;

}
else if(visitstate == 0)
{
Writing data access code 170

Instrumenting a simulation code
/* There was no input from VisIt, return control to sim. */
simulate_one_timestep(sim);

}
else if(visitstate == 1)
{

/* VisIt is trying to connect to sim. */
if(VisItAttemptToCompleteConnection())
{

fprintf(stderr, "VisIt connected\n");
/* Register data access callbacks */
VisItSetGetMetaData(SimGetMetaData, (void*)sim);

}
else

fprintf(stderr, "VisIt did not connect\n");
}
else if(visitstate == 2)
{

/* VisIt wants to tell the engine something. */
sim->runMode = VISIT_SIMMODE_STOPPED;
if(!VisItProcessEngineCommand())
{

/* Disconnect on an error or closed connection. */
VisItDisconnect();
/* Start running again if VisIt closes. */
sim->runMode = VISIT_SIMMODE_RUNNING;

}
}

} while(!sim->done && err == 0);
}

Data access functions for Fortran simulations do not have to be made available explicitly
because that is taken care of in the simV2f library, which defines the Fortran-callable
wrapper functions for libsim. Instead of defining the data access function and
registering it, you only need to define it. In fact, all data access functions for Fortran
simulations must be defined to successfully link your simulation.

Listing 5-19: fsim5.f: Fortran language example for making a data access function available.

integer function visitgetmetadata(handle)
implicit none
integer handle
include "visitfortransimV2interface.inc"
visitgetmetadata = VISIT_INVALID_HANDLE
end
Writing data access code 171

Instrumenting a simulation code

4.4 Data access function for metadata

The first data access function that you write should be the one that populates a metadata
object. VisIt uses metadata to determine which meshes and variables are in a database and
reading a database’s metadata is the first thing VisIt does when accessing it. The data
access function for returning metadata allocates and returns a handle to a
SimulationMetaData object. The SimulationMetaData object contains lists of
other metadata objects such as meshes and variables. Good starting points for a data
access function that returns metadata are found in Listing 5-18 and Listing 5-19. The code
listings found in this section may reproduce those listings, however, as the listings get
longer, the following code listings may instead contain code fragments required to
perform a particular operation. The code fragments can be included into your simulation
and modified until they expose the right variables for your simulation.

4.4.1 Returning simulation state metadata

Simulation state metadata is important because it indicates the running state of the
simulation as well as its cycle iteration and simulated time. The C-Language example in
Listing 5-20 shows how to set the simulation state into the metadata object. .

Listing 5-20: sim6.c: C-Language example for returning simulation state metadata.

visit_handle SimGetMetaData(void *cbdata)
{

visit_handle md = VISIT_INVALID_HANDLE;
simulation_data *sim = (simulation_data *)cbdata;

/* Create metadata with no variables. */
if(VisIt_SimulationMetaData_alloc(&md) == VISIT_OKAY)
{
/* Set the simulation state. */
if(sim->runMode == VISIT_SIMMODE_STOPPED)

VisIt_SimulationMetaData_setMode(md, VISIT_SIMMODE_STOPPED);
else(sim->runMode == SIM_STOPPED)

VisIt_SimulationMetaData_setMode(md, VISIT_SIMMODE_RUNNING);
VisIt_SimulationMetaData_setCycleTime(md, sim->cycle, sim->time);
}
return md;

}

Listing 5-21: fsim6.f: Fortran language example for returning simulation state metadata.

integer function visitgetmetadata()
implicit none
include "visitfortransimV2interface.inc"

ccc SIMSTATE common block
integer runflag, simcycle
real simtime
common /SIMSTATE/ runflag, simcycle, simtime
Writing data access code 172

Instrumenting a simulation code

ccc local variables
integer md, err

if(visitmdsimalloc(md).eq.VISIT_OKAY) then
err = visitmdsimsetcycletime(md, simcycle, simtime)
if(runflag.eq.1) then

err = visitmdsimsetmode(md, VISIT_SIMMODE_RUNNING)
else

err = visitmdsimsetmode(md, VISIT_SIMMODE_STOPPED)
endif

endif
visitgetmetadata = md
end

4.4.2 Returning mesh metadata

If you want VisIt to plot any of your simulation’s data then you must expose at least one of
your simulation’s meshes in the metadata. Remember that VisIt can support several
different mesh types from simple point meshes all the way up to complex multi-domain
unstructured meshes.

Mesh metadata is stored in the
SimulationMetaData as a list of
MeshMetaData objects. Each
MeshMetaData object contains
information about a mesh such as its name,
type, dimensions, units, labels, etc. Note that
when you create new MeshMetaData
objects and add them to the
SimulationMetaData object, they
become associated with the
SimulationMetaData object and you
should not deallocated them. The
SimulationMetaData object and its
contents will be destroyed after you pass it
back to VisIt.

It is not important to set values for all of the
members in the MeshMetaData object so
long as you do set values for the name,
meshType,
topologicalDimension,
spatialDimension, and numDomains.
The value that you use for the mesh’s name is the name that will appear in VisIt’s Plot
menus (see Figure 5-22) as well as the name that will be passed to your data access
function when VisIt wants to plot your mesh. The meshType value specifies the mesh’s
type and can be any of the following values: VISIT_MESHTYPE_RECTILINEAR,

Figure 5-22: Mesh variables in the plot menu
Writing data access code 173

Instrumenting a simulation code
VISIT_MESHTYPE_CURVILINEAR, VISIT_MESHTYPE_UNSTRUCTURED,
VISIT_MESHTYPE_POINT, VISIT_MESHTYPE_AMR,
VISIT_MESHTYPE_CSG. The topologicalDimension and
spatialDimension values should be either 2 or 3, depending on whether your mesh
exists in 2D or 3D. Finally, the numDomains value should be set to the total number of
domains that comprise your mesh, or 1 in the case of a single domain.

Listing 5-23: sim7.c: C-Language example for returning mesh metadata.

visit_handle m1 = VISIT_INVALID_HANDLE;
visit_handle m2 = VISIT_INVALID_HANDLE;

/* Set the first mesh’s properties.*/
if(VisIt_MeshMetaData_alloc(&m1) == VISIT_OKAY)
{

/* Set the mesh’s properties.*/
VisIt_MeshMetaData_setName(m1, "mesh2d");
VisIt_MeshMetaData_setMeshType(m1, VISIT_MESHTYPE_RECTILINEAR);
VisIt_MeshMetaData_setTopologicalDimension(m1, 2);
VisIt_MeshMetaData_setSpatialDimension(m1, 2);
VisIt_MeshMetaData_setXUnits(m1, "cm");
VisIt_MeshMetaData_setYUnits(m1, "cm");
VisIt_MeshMetaData_setXLabel(m1, "Width");
VisIt_MeshMetaData_setYLabel(m1, "Height");

VisIt_SimulationMetaData_addMesh(md, m1);
}

/* Set the second mesh’s properties.*/
if(VisIt_MeshMetaData_alloc(&m2) == VISIT_OKAY)
{

/* Set the mesh’s properties.*/
VisIt_MeshMetaData_setName(m2, "mesh3d");
VisIt_MeshMetaData_setMeshType(m2, VISIT_MESHTYPE_CURVILINEAR);
VisIt_MeshMetaData_setTopologicalDimension(m2, 3);
VisIt_MeshMetaData_setSpatialDimension(m2, 3);
VisIt_MeshMetaData_setXUnits(m2, "cm");
VisIt_MeshMetaData_setYUnits(m2, "cm");
VisIt_MeshMetaData_setZUnits(m2, "cm");
VisIt_MeshMetaData_setXLabel(m2, "Width");
VisIt_MeshMetaData_setYLabel(m2, "Height");
VisIt_MeshMetaData_setZLabel(m2, "Depth");

VisIt_SimulationMetaData_addMesh(md, m2);
}
Writing data access code 174

Instrumenting a simulation code
Apart from slight differences in the names of the functions called, the Fortran interface
follows the same pattern as the C interface.

Listing 5-24: fsim7.f: Fortran language example for returning mesh metadata.

integer md, m1, m2, err

c Set the first mesh’s properties
if(visitmdmeshalloc(m1).eq.VISIT_OKAY) then

err = visitmdmeshsetname(m1, "mesh2d", 6)
err = visitmdmeshsetmeshtype(m1,

. VISIT_MESHTYPE_RECTILINEAR)
err = visitmdmeshsettopologicaldim(m1, 2)
err = visitmdmeshsetspatialdim(m1, 2)
err = visitmdmeshsetxunits(m1, "cm", 2)
err = visitmdmeshsetyunits(m1, "cm", 2)
err = visitmdmeshsetxlabel(m1, "Width", 5)
err = visitmdmeshsetylabel(m1, "Height", 6)

err = visitmdsimaddmesh(md, m1)
endif

c Set the second mesh’s properties
if(visitmdmeshalloc(m2).eq.VISIT_OKAY) then

err = visitmdmeshsetname(m2, "mesh3d", 6)
err = visitmdmeshsetmeshtype(m2,

. VISIT_MESHTYPE_CURVILINEAR)
err = visitmdmeshsettopologicaldim(m2, 3)
err = visitmdmeshsetspatialdim(m2, 3)
err = visitmdmeshsetxunits(m2, "cm", 2)
err = visitmdmeshsetyunits(m2, "cm", 2)
err = visitmdmeshsetzunits(m2, "cm", 2)
err = visitmdmeshsetxlabel(m2, "Width", 5)
err = visitmdmeshsetylabel(m2, "Height", 6)
err = visitmdmeshsetzlabel(m2, "Depth", 5)

err = visitmdsimaddmesh(md, m2)
endif

4.4.3 Returning variable metadata

Variables must be exposed via the metadata if they are to be plotted in VisIt. You need not
expose all of the variables that you have; only those you want to plot in VisIt. The
SimulationMetaData object contains a list of VariableMetaData objects,
which contain the metadata for all of the variables that you expose to VisIt. All variable
types: scalar, vector, tensor, label, array, etc. can be represented in the metadata as
VariableMetaData objects. Specifying a variable only requires you to add a new
Writing data access code 175

Instrumenting a simulation code
VariableMetaData object into the simulation metadata. You must set the name,
meshName, type, and centering fields in order to create a valid object.

Listing 5-25: sim8.c: C-Language example for returning variable metadata.

/* Add a zonal scalar variable on mesh2d. */
if(VisIt_VariableMetaData_alloc(&vmd) == VISIT_OKAY)
{

VisIt_VariableMetaData_setName(vmd, "zonal");
VisIt_VariableMetaData_setMeshName(vmd, "mesh2d");
VisIt_VariableMetaData_setType(vmd, VISIT_VARTYPE_SCALAR);
VisIt_VariableMetaData_setCentering(vmd, VISIT_VARCENTERING_ZONE);

VisIt_SimulationMetaData_addVariable(md, vmd);
}

/* Add a nodal scalar variable on mesh3d. */
if(VisIt_VariableMetaData_alloc(&vmd) == VISIT_OKAY)
{

VisIt_VariableMetaData_setName(vmd, "nodal");
VisIt_VariableMetaData_setMeshName(vmd, "mesh3d");
VisIt_VariableMetaData_setType(vmd, VISIT_VARTYPE_SCALAR);
VisIt_VariableMetaData_setCentering(vmd, VISIT_VARCENTERING_NODE);

VisIt_SimulationMetaData_addVariable(md, vmd);
}

Listing 5-26: fsim8.f: Fortran language example for returning variable metadata.

c Add a zonal scalar variable on mesh2d.
if(visitmdvaralloc(vmd).eq.VISIT_OKAY) then

err = visitmdvarsetname(vmd, "zonal", 5)
err = visitmdvarsetmeshname(vmd, "mesh2d", 6)
err = visitmdvarsettype(vmd, VISIT_VARTYPE_SCALAR)
err = visitmdvarsetcentering(vmd, VISIT_VARCENTERING_ZONE)

err = visitmdsimaddvariable(md, vmd)
endif

c Add a nodal scalar variable on mesh3d.
if(visitmdvaralloc(vmd).eq.VISIT_OKAY) then

err = visitmdvarsetname(vmd, "nodal", 5)
err = visitmdvarsetmeshname(vmd, "mesh3d", 6)
err = visitmdvarsettype(vmd, VISIT_VARTYPE_SCALAR)
err = visitmdvarsetcentering(vmd, VISIT_VARCENTERING_NODE)

err = visitmdsimaddvariable(md, vmd)
endif
Writing data access code 176

Instrumenting a simulation code
4.4.4 Returning curve variable metadata

As with other variable types, curve variables (X-Y plot data) must also be exposed in the
metadata if they are to be plotted in VisIt. The SimulationMetaData object contains
a list of CurveMetaData objects, which contain the attributes of the curve variables that
will be exposed to VisIt from the simulation. The only required field that must be set in the
CurveMetaData object is the name field, which specifies the name of the curve as it
will be used in the Plot list and in your data access function.

Listing 5-27: sim9.c: C-Language example for returning curve metadata.

/* Add a curve variable. */
if(VisIt_CurveMetaData_alloc(&cmd) == VISIT_OKAY)
{

VisIt_CurveMetaData_setName(cmd, "sine");
VisIt_CurveMetaData_setXLabel(cmd, "Angle");
VisIt_CurveMetaData_setXUnits(cmd, "radians");
VisIt_CurveMetaData_setYLabel(cmd, "Amplitude");

VisIt_SimulationMetaData_addCurve(md, cmd);
}

Listing 5-28: fsim9.f: Fortran language example for returning curve metadata.

c Add a curve variable
if(visitmdcurvealloc(cmd).eq.VISIT_OKAY) then

err = visitmdcurvesetname(cmd, "sine", 4)
err = visitmdcurvesetxlabel(cmd, "angle", 5)
err = visitmdcurvesetxunits(cmd, "radians", 7)
err = visitmdcurvesetylabel(cmd, "amplitude", 9)

err = visitmdsimaddcurve(md, cmd)
endif

4.4.5 Returning material metadata

In addition to the variable types mentioned so far, the SimulationMetaData object
also contains a list of material variables. The list of material variables is stored in the
materials member and is composed of MaterialMetaData objects. A
MaterialMetaData object contains the name of the material, the mesh on which it is
defined, and the list of possible material names that can be used.

Listing 5-29: sim10.c: C-Language example for returning material metadata.

/* Add a material */
if(VisIt_MaterialMetaData_alloc(&mat) == VISIT_OKAY)
{

VisIt_MaterialMetaData_setName(mat, "mat");
Writing data access code 177

Instrumenting a simulation code

VisIt_MaterialMetaData_setMeshName(mat, "mesh2d");
VisIt_MaterialMetaData_addMaterialName(mat, "Iron");
VisIt_MaterialMetaData_addMaterialName(mat, "Copper");
VisIt_MaterialMetaData_addMaterialName(mat, "Nickel");

VisIt_SimulationMetaData_addMaterial(md, mat);
}.

Listing 5-30: fsim10.f: Fortran language example for returning material metadata.

c Add a material
if(visitmdmatalloc(mat).eq.VISIT_OKAY) then

err = visitmdmatsetname(mat, "mat", 3)
err = visitmdmatsetmeshname(mat, "mesh2d", 6)
err = visitmdmataddmaterialname(mat, "Iron", 4)
err = visitmdmataddmaterialname(mat, "Copper", 6)
err = visitmdmataddmaterialname(mat, "Nickel", 6)

err = visitmdsimaddmaterial(md, mat)
endif

4.4.6 Returning expression metadata

VisIt allows databases to return user-defined expressions that can be plotted or used to
create new expressions in the Expressions window. The SimulationMetaData
object contains a list of ExpressionMetaData objects that each contain the
information for one expression. An expression consists of an expression name, definition,
and expression type. The expression definition is a string that must contain a valid VisIt
expression, as defined in by the expression language documented in the VisIt User’s
Manual.

Listing 5-31: sim11.c: C-Language example for returning material metadata.

/* Add some expressions. */
if(VisIt_ExpressionMetaData_alloc(&emd) == VISIT_OKAY)
{

VisIt_ExpressionMetaData_setName(emd, "zvec");
VisIt_ExpressionMetaData_setDefinition(emd, "{zonal, zonal}");
VisIt_ExpressionMetaData_setType(emd, VISIT_VARTYPE_VECTOR);

VisIt_SimulationMetaData_addExpression(md, emd);
}
if(VisIt_ExpressionMetaData_alloc(&emd) == VISIT_OKAY)
{

VisIt_ExpressionMetaData_setName(emd, "nid");
VisIt_ExpressionMetaData_setDefinition(emd, "nodeid(mesh3d)");
VisIt_ExpressionMetaData_setType(emd, VISIT_VARTYPE_SCALAR);
Writing data access code 178

Instrumenting a simulation code
VisIt_SimulationMetaData_addExpression(md, emd);
}

Listing 5-32: fsim11.f: Fortran language example for returning material metadata.

c Add some expressions
if(visitmdexpralloc(emd).eq.VISIT_OKAY) then

err = visitmdexprsetname(emd, "zvec", 4)
err = visitmdexprsetdefinition(emd, "{zonal, zonal}", 14)
err = visitmdexprsettype(emd, VISIT_VARTYPE_VECTOR)

err = visitmdsimaddexpression(md, emd)
endif
if(visitmdexpralloc(emd).eq.VISIT_OKAY) then

err = visitmdexprsetname(emd, "nid", 3)
err = visitmdexprsetdefinition(emd, "nodeid(mesh3d)", 14)
err = visitmdexprsettype(emd, VISIT_VARTYPE_SCALAR)

err = visitmdsimaddexpression(md, emd)
endif

4.4.7 Returning simulation-defined command metadata

VisIt allows your simulation to provide the names of user-defined commands in the
metadata object. When such commands appear in a simulation’s metadata, it influences
VisIt to create special command buttons in the Simulations window. When you open
the Simulations window and click on the buttons, it causes a chain of events that ends
up calling your simulation’s command callback function, which then performs some
action based on the name of the command being executed. These custom commands give
you the opportunity to perform limited steering of your simulation from within VisIt.
More advanced methods of simulation steering will be covered later in this chapter.
Writing data access code 179

Instrumenting a simulation code

Examples of simple simulation
commands that you might want to
expose in the metadata are the “run”,
“halt”, “step”. Imagine that you use VisIt
to connect to your simulation and you
create some plots. Once you are done
analyzing a particular time step, you may
want to click the “run” button in the
Simulations window (shown in
Figure 5-33) to let your simulation
proceed for a while. After your
simulation has advanced, you could click
the “halt” button to pause it while you
investigate features that have developed
in the data for the simulation’s current
time step.

The C-Language mainloop function
that was created in Section 3.4.2 did not
have support for a command callback
function. The following code listing
shows what the command callback
function would look like for a simulation
that exposes three simple commands:
halt, step, and run. The code listing also
shows how the command callback
function is registered with libsim
using the
VisItSetCommandCallback function. The new command callback function is
registered after a successful call to VisItAttemptToCompleteConnection and
the changes to the mainloop function are underlined.

Figure 5-33: VisIt’s Simulations window with custom
simulation commands.

Listing 5-34: sim12.c: C-Language example for installing a command callback function.

void
ControlCommandCallback(const char *cmd, const char *args,

void *cbdata)
{

simulation_data *sim = (simulation_data *)cbdata;

if(strcmp(cmd, "halt") == 0)
sim->runMode = VISIT_SIMMODE_STOPPED;

else if(strcmp(cmd, "step") == 0)
simulate_one_timestep(sim);

else if(strcmp(cmd, "run") == 0)
sim->runMode = VISIT_SIMMODE_RUNNING;

}
void mainloop(simulation_data *sim)
Writing data access code 180

Instrumenting a simulation code
{
int blocking, visitstate, err = 0;

do
{

blocking = (sim->runMode == VISIT_SIMMODE_RUNNING) ? 0 : 1;
/* Get input from VisIt or timeout so the simulation can run. */
visitstate = VisItDetectInput(blocking, -1);

/* Do different things depending on the output from
VisItDetectInput. */
if(visitstate <= -1)
{

fprintf(stderr, "Can’t recover from error!\n");
err = 1;

}
else if(visitstate == 0)
{

/* There was no input from VisIt, return control to sim. */
simulate_one_timestep(sim);

}
else if(visitstate == 1)
{

/* VisIt is trying to connect to sim. */
if(VisItAttemptToCompleteConnection())
{

fprintf(stderr, "VisIt connected\n");
/* Register command callback */
VisItSetCommandCallback(ControlCommandCallback,

(void*)sim);
/* Register data access callbacks */
VisItSetGetMetaData(SimGetMetaData, (void*)sim);

}
else

fprintf(stderr, "VisIt did not connect\n");
}
else if(visitstate == 2)
{

/* VisIt wants to tell the engine something. */
sim->runMode = VISIT_SIMMODE_STOPPED;
if(!VisItProcessEngineCommand())
{

/* Disconnect on an error or closed connection. */
VisItDisconnect();
/* Start running again if VisIt closes. */
sim->runMode = VISIT_SIMMODE_RUNNING;

}
}

} while(!sim->done && err == 0);
}
Writing data access code 181

Instrumenting a simulation code

Listing 5-35: sim12.c: C-Language example for returning simulation commands in the metadata.

/* Add some commands. */
const char *cmd_names[] = {"halt", "step", "run"};
for(i = 0; i < sizeof(cmd_names)/sizeof(const char *); ++i)
{

visit_handle cmd = VISIT_INVALID_HANDLE;
if(VisIt_CommandMetaData_alloc(&cmd) == VISIT_OKAY)
{

VisIt_CommandMetaData_setName(cmd, cmd_names[i]);
VisIt_SimulationMetaData_addGenericCommand(md, cmd);

}
}

Since the Fortran interface, defined in the simV2f library, requires callbacks to be in
place when the simulation is linked, the Fortran simulation examples so far have already
contained a command callback function. No change is required to the mainloop
function in the Fortran simulations because the callback is already installed. The
command callback function, which is always named visitcommandcallback in a
Fortran simulation, previously did nothing. The following code example shows how to
compare the names of a command coming from a button click in VisIt’s Simulations
window with the names of the supported commands and how to perform the desired
action. The Fortran interface provides the visitstrcmp function, which is analygous to
the C-Language’s strcmp function in order to make string comparisons easier in Fortran.

Listing 5-36: fsim12.f: Fortran language implementation of the command callback function.

c---
c visitcommandcallback
c---

subroutine visitcommandcallback (cmd, lcmd, args, largs)
implicit none
character*8 cmd, args
integer lcmd, largs
include "visitfortransimV2interface.inc"

ccc SIMSTATE common block
integer runflag, simcycle
real simtime
common /SIMSTATE/ runflag, simcycle, simtime

c Handle the commands that we define in visitgetmetadata.
if(visitstrcmp(cmd, lcmd, "halt", 4).eq.0) then

runflag = 0
elseif(visitstrcmp(cmd, lcmd, "step", 4).eq.0) then

call simulate_one_timestep()
elseif(visitstrcmp(cmd, lcmd, "run", 3).eq.0) then

runflag = 1
endif
Writing data access code 182

Instrumenting a simulation code
end

Listing 5-37: fsim12.f: Fortran language example for returning simulation commands in metadata..

c Add simulation commands
if(visitmdcmdalloc(cmd).eq.VISIT_OKAY) then

err = visitmdcmdsetname(cmd, "halt", 4)
err = visitmdsimaddgenericcommand(md, cmd)

endif
if(visitmdcmdalloc(cmd).eq.VISIT_OKAY) then

err = visitmdcmdsetname(cmd, "step", 4)
err = visitmdsimaddgenericcommand(md, cmd)

endif
if(visitmdcmdalloc(cmd).eq.VISIT_OKAY) then

err = visitmdcmdsetname(cmd, "run", 3)
err = visitmdsimaddgenericcommand(md, cmd)

endif

4.5 Data access function for meshes

Now that you’ve implemented a function to return metadata about the meshes and
variables in your simulation, you can write a new data access function to return the actual
mesh. Adding a new data access function means that you will be registering a new
callback function as you did before to register the metadata callback function. If your
simulation is written in Fortran, you must implement the visitgetmesh function to
return your mesh’s data.

VisIt deals with several mesh types and each mesh type has its own corresponding data
object that represents its data. The data access function for meshes allocates a handle to
one of the mesh data types, fills in the results, and returns it. This section will first show
how to return the right mesh to VisIt and will then focus on passing different types of
meshes back to VisIt so they can be visualized.

4.5.1 Adding a mesh data access function

Adding a mesh data access function means that you have to first write a function and call
VisItSetGetMesh to register it with libsim. You must register the function after a
successful call to VisItAttemptToCompleteConnection so it should be done at
the same time you register your metadata callback. The mesh data access function takes 3
arguments if you program in C. The first argument is a domain number, which you can use
to return smaller pieces of the whole mesh. The mesh name will be one of the meshes that
you added to the metadata. The second argument is the name of the mesh that VisIt wants
to read. The third argument is a void pointer to the the user-defined data that you passed to
VisItSetGetMesh when you registered the mesh callback function. The user-defined
data should point to your data model so you can retrieve mesh data from the callback
function without using global variables.
Writing data access code 183

Instrumenting a simulation code
The basic procedure involved in writing a mesh data access function is to first check the
incoming name against the names of the meshes that your simulation is prepared to return
and when one is found, return a handle to a mesh object that contains the mesh’s data. If
your mesh data access routine does not recognize the name of the mesh or if there is no
data for the requested domain then you can return VISIT_INVALID_HANDLE instead
of returning a mesh data object.

Listing 5-38: mesh.c: C-Language example for installing a mesh data access function.

visit_handle VisItGetMesh(int domain, const char *name, void *data)
{

visit_handle mesh = VISIT_INVALID_HANDLE;

if(strcmp(name, "mesh2d") == 0)
{

/* Allocate a rectilinear mesh. */
if(VisIt_RectilinearMesh_alloc(&mesh) == VISIT_OKAY)
{

/* Fill in the attributes of the RectilinearMesh. */
}

}
else if(strcmp(name, "mesh3d") == 0)
{

/* Allocate a curvilinear mesh. */
if(VisIt_CurvilinearMesh_alloc(&mesh) == VISIT_OKAY)
{

/* Fill in the attributes of the CurvilinearMesh. */
}

}

return mesh;
}

Remember that when writing a Fortran simulation, all of the data access functions must be
defined before you can actually link your simulation. That means that up until now, the
Fortran example programs have been using a simple implementation of the
visitgetmesh function, which did nothing. The rest of this section will cover how to
add an appropriate, working implementation of the visitgetmesh data access
function.

Listing 5-39: fmesh.f: Fortran language example of a mesh data access function.

c---
c visitgetmesh
c---

integer function visitgetmesh(handle, domain, name, lname)
implicit none
character*8 name
integer handle, domain, lname
Writing data access code 184

Instrumenting a simulation code

include "visitfortransimV2interface.inc"
integer h
h= VISIT_INVALID_HANDLE
if(visitstrcmp(name, lname, "mesh2d", 6).eq.0) then

c Create a rectilinear mesh here
if(visitrectmeshalloc(h).eq.VISIT_OKAY) then

c fill in the mesh data
endif

elseif(visitstrcmp(name, lname, "mesh3d", 6).eq.0) then
c Create a curvilinear mesh here

if(visitcurvmeshalloc(h).eq.VISIT_OKAY) then
c fill in the mesh data

endif
endif
visitgetmesh = h
end

4.5.2 VariableData

SimV2 provides a VariableData object that can represent linear arrays of char, int,
float, and double precision data. Each tuple in the array can consist of multiple values, or
components. For example, scalar data has 1 component but 3D vector data would have 3
components that describe it. Label variable data or array variable data could have more
components. The simulation provides its data to VisIt in terms of VariableData
objects. Meshes can consist of 1 or more VariableData objects to specify coordinates
and connectivity. The composition, type, and number of the VariableData objects in a
mesh will vary depending on the mesh type.

VariableData objects all have a concept of an owner for the data arrays that they
wrap. Some arrays are long-lived and change little and can be used by VisIt without
making a copy. These arrays are owned by the simulation and have an owner of type
VISIT_OWNER_SIM. Some arrays are dynamically created by the sim for the express
purpose of being fed to VisIt with the intent that VisIt will free the memory associated
with the VariableData. These arrays have an owner of type VISIT_OWNER_VISIT
and VisIt frees the data using the C Standard Library free() function when the data is
no longer needed. As such, any data passed to VisIt with owner type
VISIT_OWNER_VISIT must be allocated using malloc(). There is a special owner
case called VISIT_OWNER_COPY that can be used to wrap stack variables that will go
out of scope. When VISIT_OWNER_COPY is used, it acts as a trigger to get libsim to
copy the data passed to the VariableData instead of just keeping a pointer to it. The
copied data is then marked with VISIT_OWNER_VISIT as the owner.

4.6 Rectilinear meshes

Rectilinear meshes can be returned by the mesh data access function by allocating and
returning a RectilinearMesh object. In fact, meshes of type AVT_AMR_MESH in
the metadata are treated as rectilinear meshes when it is time to return data to VisIt. Once
Writing data access code 185

Instrumenting a simulation code

you’ve allocated the RectilinearMesh object, start initializing its members using
information about the mesh. For starters, create 2 or 3 VariableData objects to
represent the mesh’s coordinate fields. You can associate the VariableData objects
with the mesh as its coordinates by calling
VisIt_RectilinearMesh_setCoordsXY for 2D and
VisIt_RectilinearMesh_setCoordsXYZ for 3D.

In SimV2, the only required pieces of a RectilinearMesh object are the coordinates.
All other fields in the mesh will be set to sensible default values. You can, however,
override the default values.

You can set the baseIndex member, which is an offset in X,Y,Z that will be added to
your mesh’s zone numbers and node numbers when VisIt displays information about your
mesh. You can leave these values set at zero. However, when you want to create a multi-
domain mesh that has global zone and node numbers, you should set the values for
baseIndex. Global node and zone numbers can make it easier to think of your domain-
decomposed mesh as a single entity by making VisIt features such as pick return global
node or zone numbers instead of per-domain node or zone numbers.

Now that you’ve set the values in the RectilinearMesh object that indicate its logical
size, you can tell VisIt whether the mesh has ghost zones. The RectilinearMesh
object indicates whether there are ghost zones by using the values stored in the
minRealIndex and maxRealIndex members. These values are set by calling
VisIt_RectilinearMesh_setRealIndices. The defaults are set to values that
make sense for a mesh with no ghost zones: the minimums are all zeroes and the
maximums are set to the number zones in the specified dimension minus one. If your mesh
has ghost zones in any of the dimensions then be sure that you add 1 to the values stored in
the minRealIndex array for the dimensions that have ghost zones. Also be sure to
subtract 1 from the elements in the maxRealIndex array for the dimensions that have
ghost zones..

Listing 5-40: mesh.c: C-Language example for returning a rectilinear mesh.

/* Simulation mesh */
float rmesh_x[] = {0., 1., 2.5, 5.};
float rmesh_y[] = {0., 2., 2.25, 2.55, 5.};
int rmesh_dims[] = {4, 5, 1};
int rmesh_ndims = 2;

visit_handle
SimGetMesh(int domain, const char *name, void *cbdata)
{

visit_handle h = VISIT_INVALID_HANDLE;

if(strcmp(name, "mesh2d") == 0)
{

if(VisIt_RectilinearMesh_alloc(&h) != VISIT_ERROR)
{
Writing data access code 186

Instrumenting a simulation code
visit_handle hxc, hyc;
VisIt_VariableData_alloc(&hxc);
VisIt_VariableData_alloc(&hyc);
VisIt_VariableData_setDataF(hxc, VISIT_OWNER_SIM, 1,

rmesh_dims[0], rmesh_x);
VisIt_VariableData_setDataF(hyc, VISIT_OWNER_SIM, 1,

rmesh_dims[1], rmesh_y);
VisIt_RectilinearMesh_setCoordsXY(h, hxc, hyc);

}
}
return h;

}

The Fortran implementation of the GetMesh callback function follows the same pattern as
the C implementation. The data arrays that make up the rectilinear mesh in the upcoming
Fortran example are stored in a Fortran common block, making the data accessible to the
simulate_one_timestep function and the visitgetmesh function. If you store
your data in common blocks, it is easy to make it accessible to VisIt.

Listing 5-41: fmesh.f: Fortran language example for returning a rectilinear mesh.

subroutine simulate_one_timestep()
ccc RECTMESH common block

integer NX, NY
parameter (NX = 4)
parameter (NY = 5)
real rmx(NX), rmy(NY)
integer rmdims(3), rmndims
common /RECTMESH/ rmdims, rmndims, rmx, rmy
save /RECTMESH/

c Initial rectilinear mesh
data rmndims /2/
data rmdims /4, 5, 1/
data rmx/0., 1., 2.5, 5./
data rmy/0., 2., 2.25, 2.55, 5./

c Simulate one time step
end

c---
c visitgetmesh
c---

integer function visitgetmesh(handle, domain, name, lname)
implicit none
character*8 name
integer handle, domain, lname
include "visitfortransimV2interface.inc"

ccc RECTMESH common block (shared with simulate_one_timestep)
integer NX, NY
parameter (NX = 4)
parameter (NY = 5)
real rmx(NX), rmy(NY)
Writing data access code 187

Instrumenting a simulation code
integer rmdims(3), rmndims
common /RECTMESH/ rmdims, rmndims, rmx, rmy

ccc local variables
integer h, err

h = VISIT_INVALID_HANDLE
if(visitstrcmp(name, lname, "mesh2d", 6).eq.0) then

if(visitrectmeshalloc(h).eq.VISIT_OKAY) then
err = visitvardataalloc(x)
err = visitvardataalloc(y)
err = visitvardatasetf(x,VISIT_OWNER_SIM,1,NX,rmx)
err = visitvardatasetf(y,VISIT_OWNER_SIM,1,NY,rmy)

err = visitrectmeshsetcoordsxy(h, x, y)
endif

endif

visitgetmesh = h
end

Figure 5-42: 2D rectilinear mesh returned by the previous
code examples.

4.7 Curvilinear meshes

Curvilinear meshes can be passed to VisIt by allocating and returning a
CurvilinearMesh object from your mesh data access function. The procedure for
creating a curvilinear mesh is nearly the same as that for creating a rectilinear mesh. The
Writing data access code 188

Instrumenting a simulation code

main difference that VisIt recognizes between the two mesh types is the size of the
coordinate arrays. A curvilinear mesh must have the X,Y,Z coordinates of each node in the
mesh explicitly provided, whereas most of the coordinates are implicitly defined, with
only 1D arrays given for the X,Y,Z coordinates, in a rectilinear mesh. As with a rectilinear
mesh, you will need to create 2 or 3 VariableData objects in which to store the
coordinate data when coordinate data are separate. The size of each coordinate array will
be NX*NY*NZ where NX is the number of nodes in the X dimension, NY is the number
of nodes on the Y dimension, and NZ is the number of nodes in the Z dimension. Since the
code for handling curvilinear meshes is so similar to that for handling rectilinear meshes,
refer to Section 4.6 for more detail on setting values into the CurvilinearMesh.

Listing 5-43: mesh.c: C-Language example for returning a curvilinear mesh.

/* Curvilinear mesh */
float cmesh_x[2][3][4] = {

{{0.,1.,2.,3.},{0.,1.,2.,3.}, {0.,1.,2.,3.}},
{{0.,1.,2.,3.},{0.,1.,2.,3.}, {0.,1.,2.,3.}}

};
float cmesh_y[2][3][4] = {

{{0.5,0.,0.,0.5},{1.,1.,1.,1.}, {1.5,2.,2.,1.5}},
{{0.5,0.,0.,0.5},{1.,1.,1.,1.}, {1.5,2.,2.,1.5}}

};
float cmesh_z[2][3][4] = {

{{0.,0.,0.,0.},{0.,0.,0.,0.},{0.,0.,0.,0.}},
{{1.,1.,1.,1.},{1.,1.,1.,1.},{1.,1.,1.,1.}}

};
int cmesh_dims[] = {4, 3, 2};
int cmesh_ndims = 3;

visit_handle
SimGetMesh(int domain, const char *name, void *cbdata)
{

visit_handle h = VISIT_INVALID_HANDLE;

if(strcmp(name, "mesh3d") == 0)
{

if(VisIt_CurvilinearMesh_alloc(&h) != VISIT_ERROR)
{

int nn;
visit_handle hxc, hyc, hzc;
nn = cmesh_dims[0] * cmesh_dims[1] * cmesh_dims[2];
VisIt_VariableData_alloc(&hxc);
VisIt_VariableData_alloc(&hyc);
VisIt_VariableData_alloc(&hzc);
VisIt_VariableData_setDataF(hxc, VISIT_OWNER_SIM, 1, nn,
(float*)cmesh_x);
VisIt_VariableData_setDataF(hyc, VISIT_OWNER_SIM, 1, nn,
(float*)cmesh_y);
VisIt_VariableData_setDataF(hzc, VISIT_OWNER_SIM, 1, nn,
(float*)cmesh_z);
Writing data access code 189

Instrumenting a simulation code

VisIt_CurvilinearMesh_setCoordsXYZ(h, cmesh_dims, hxc, hyc,
hzc);

}
}

return h;
}

The Fortran interface provides the visitmeshcurvilinear function to create a
rectilinear mesh that can be passed back to VisIt. The visitmeshcurvilinear
function essentially packages up the code from the C-Language example, making it
possible to dynamically create a CurvilinearMesh object and populate its members.
The data arrays that make up the curvilinear mesh in the upcoming Fortran example are
stored in a Fortran common block, making the data accessible to the
simulate_one_timestep function and the visitgetmesh function.

Listing 5-44: fmesh.f: Fortran language example for returning a curvilinear mesh.

subroutine simulate_one_timestep()
ccc CURVMESH common block

integer CNX, CNY, CNZ
parameter (CNX = 4)
parameter (CNY = 3)
parameter (CNZ = 2)
integer cmdims(3), cmndims
real cmx(CNX,CNY,CNZ), cmy(CNX,CNY,CNZ), cmz(CNX,CNY,CNZ)
common /CURVMESH/ cmdims, cmndims, cmx, cmy, cmz
save /CURVMESH/

c Curvilinear mesh data
data cmx/0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3.,

. 0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3./
data cmy/0.5,0.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5,

. 0.5,0.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5/
data cmz/0.,0.,0.,0., 0.,0.,0.,0., 0.,0.,0.,0,

. 1.,1.,1.,1., 1.,1.,1.,1., 1.,1.,1.,1./
data cmndims /3/
data cmdims/CNX,CNY,CNZ/

c Simulate one time step
end

c--
c visitgetmesh
c--

integer function visitgetmesh(handle, domain, name, lname)
implicit none
character*8 name
integer handle, domain, lname
include "visitfortransimV2interface.inc"

ccc CURVMESH common block (shares with simulate_one_timestep)
integer CNX, CNY, CNZ
parameter (CNX = 4)
Writing data access code 190

Instrumenting a simulation code
parameter (CNY = 3)
parameter (CNZ = 2)
integer cmdims(3), cmndims
real cmx(CNX,CNY,CNZ), cmy(CNX,CNY,CNZ), cmz(CNX,CNY,CNZ)
common /CURVMESH/ cmdims, cmndims, cmx, cmy, cmz

ccc local variables
integer h, x, y, z, nnodes, err

h = VISIT_INVALID_HANDLE
if(visitstrcmp(name, lname, "mesh3d", 6).eq.0) then

if(visitcurvmeshalloc(h).eq.VISIT_OKAY) then
err = visitvardataalloc(x)
err = visitvardataalloc(y)
err = visitvardataalloc(z)
nnodes = CNX * CNY * CNZ
err = visitvardatasetf(x,VISIT_OWNER_SIM,1,nnodes,cmx)
err = visitvardatasetf(y,VISIT_OWNER_SIM,1,nnodes,cmy)
err = visitvardatasetf(z,VISIT_OWNER_SIM,1,nnodes,cmz)

err = visitcurvmeshsetcoordsxyz(h, cmdims, x, y, z)
endif

endif
visitgetmesh = h
end

Figure 5-45: 3D curvilinear mesh returned by the previous
code examples
Writing data access code 191

Instrumenting a simulation code
4.8 Point meshes

Point meshes can be returned by allocating and returning a PointMesh object from your
mesh data access function. Once you’ve allocated the PointMesh object, start
initializing its members using information about the mesh. Point meshes contain relatively
few elements - little more than a list of vertices. As with structured meshes, you will need
to create 2 or 3 VariableData objects in which to store the coordinate data when
coordinate data are separate. You can then associate those VariableData objects with
the PointMesh object by calling VisIt_PointMesh_setCoordsXY or
VisIt_PointMesh_setCoordsXYZ..

Listing 5-46: point.c: C-Language example for returning a point mesh.

#define NPTS 1000

/* Simulation data is stored in this structure. */
typedef struct
{

int cycle;
double time;
int runMode;
int done;

float angle;
float *x;
float *y;
float *z;

} simulation_data;

visit_handle
SimGetMesh(int domain, const char *name, void *cbdata)
{

visit_handle h = VISIT_INVALID_HANDLE;
/* We passed a pointer to the simulation data as user-data when we
* registered the SimGetMesh data access callback.
*/
simulation_data *sim = (simulation_data *)cbdata;

if(strcmp(name, "point3d") == 0)
{

if(VisIt_PointMesh_alloc(&h) != VISIT_ERROR)
{

visit_handle hx, hy, hz;

VisIt_VariableData_alloc(&hx);
VisIt_VariableData_alloc(&hy);
VisIt_VariableData_alloc(&hz);
VisIt_VariableData_setDataF(hx, VISIT_OWNER_SIM, 1, NPTS,
sim->x);
VisIt_VariableData_setDataF(hy, VISIT_OWNER_SIM, 1, NPTS,
sim->y);
Writing data access code 192

Instrumenting a simulation code

VisIt_VariableData_setDataF(hz, VISIT_OWNER_SIM, 1, NPTS,
sim->z);
VisIt_PointMesh_setCoordsXYZ(h, hx, hy, hz);

}
}

return h;
}

The Fortran interface provides the visitmeshpoint function so you can create a
VisIt_PointMesh object that can be returned to VisIt. The visitmeshpoint
function takes 6 arguments. The first argument is an integer handle to the mesh object that
was passed into the visitgetmesh function. The second argument allows you to set the
number of dimensions that your point mesh will use: 2 or 3. The third argument lets you
set the number of nodes in your point mesh. The final three REAL arguments contain the
X,Y,Z coordinates, respectively.

Listing 5-47: fpoint.f: Fortran language example for returning a point mesh.

integer function visitgetmesh(domain, name, lname)
implicit none
character*8 name
integer domain, lname
include "visitfortransimV2interface.inc"

ccc POINTMESH common block (shared with simulate_one_timestep)
integer NPTS
parameter (NPTS = 1000)
real pmx(NPTS), pmy(NPTS), pmz(NPTS)
common /POINTMESH/ pmx, pmy, pmz

ccc local vars
integer h, hx, hy, hz, err

h = VISIT_INVALID_HANDLE
if(visitstrcmp(name, lname, "point3d", 7).eq.0) then

if(visitpointmeshalloc(h).eq.VISIT_OKAY) then
err = visitvardataalloc(hx)
err = visitvardataalloc(hy)
err = visitvardataalloc(hz)
err = visitvardatasetf(hx, VISIT_OWNER_SIM, 1, NPTS, pmx)
err = visitvardatasetf(hy, VISIT_OWNER_SIM, 1, NPTS, pmy)
err = visitvardatasetf(hz, VISIT_OWNER_SIM, 1, NPTS, pmz)
err = visitpointmeshsetcoordsxyz(h, hx, hy, hz)

endif
endif
visitgetmesh = h
end
Writing data access code 193

Instrumenting a simulation code

Figure 5-48: 3D point mesh returned by the previous code
examples

4.9 Unstructured meshes

Unstructured meshes can be returned allocating and returning an UnstructuredMesh
object from your mesh data access function. After allocating the UnstructuredMesh
object, you can begin filling in its data. As with other mesh types, you must provide
coordinates. This requires either 2 or 3 VariableData objects when the coordinates are
separate. You can associate the coordinate arrays with the UnstructuredMesh object
by calling the VisIt_UnstructuredMesh_setCoordsXY or
VisIt_UnstructuredMesh_setCoordsXYZ functions.
Writing data access code 194

Instrumenting a simulation code

In addition to coordinates, you
4 must also create a

VariableData object that
wraps an integer array

1 containing the mesh
connectivity. The mesh
connectivity is stored as a linear
array of integers in sequences

VISIT_CELL_TET VISIT_CELL_PYR that list the zone type, followed
by the node indices being used
for that zone. The connectivity

4 7 can contain a mix of all zone

0

1 32 2

3

0

2 5

0

5

3

6

0

types in any order. The node
indices should begin at zero,
even in languages where the first
array element is one, such as in3
Fortran. This pattern is repeated
until all zones in the mesh have

1 4 1 2 been identified. Figure 5-49
VISIT_CELL_WEDGE VISIT_CELL_HEX shows the node ordering that

must be used to create cells for
Figure 5-49: Node ordering for 3D unstructured zone types an unstructured mesh, though

polyhedral cells are not shown.
Note that the node ordering (VTK’s node ordering) is the same as for creating Silo files,
except for the wedge zone type.

If your mesh has ghost zones, you can indicate their placement in the zone list by calling
VisIt_UnstructuredMesh_setRealIndices. The function takes start and end
indices of the real zones in the zone list. Zones before the start or after the end of the
specified indices are treated as ghost zones. If your mesh has no ghost zones then you do
not need to set anything as all zones are assumed to be real zones by default.

Listing 5-50: unstructured.c: C-Language example for returning an unstructured mesh.

float umx[] = {0.,2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4.,4.};
float umy[] = {0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,0.};
float umz[] = {2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2.,0.};
/* Connectivity */
int connectivity[] = {

VISIT_CELL_HEX, 0,1,2,3,4,5,6,7, /* hex, zone 1 */
VISIT_CELL_HEX, 4,5,6,7,8,9,10,11, /* hex, zone 2 */
VISIT_CELL_PYR, 8,9,10,11,12, /* pyramid, zone 3 */
VISIT_CELL_WEDGE, 1,14,5,2,15,6, /* wedge, zone 4 */
VISIT_CELL_TET, 1,14,13,5 /* tet, zone 5 */

};
int lconnectivity = sizeof(connectivity) / sizeof(int);
Writing data access code 195

Instrumenting a simulation code
int umnnodes = 16;
int umnzones = 5;

visit_handle
SimGetMesh(int domain, const char *name, void *cbdata)
{

visit_handle h = VISIT_INVALID_HANDLE;

if(strcmp(name, "unstructured3d") == 0)
{

if(VisIt_UnstructuredMesh_alloc(&h) != VISIT_ERROR)
{

visit_handle x,y,z,conn;

VisIt_VariableData_alloc(&x);
VisIt_VariableData_alloc(&y);
VisIt_VariableData_alloc(&z);
VisIt_VariableData_setDataF(x, VISIT_OWNER_SIM, 1, umnnodes,
umx);
VisIt_VariableData_setDataF(y, VISIT_OWNER_SIM, 1, umnnodes,
umy);
VisIt_VariableData_setDataF(z, VISIT_OWNER_SIM, 1, umnnodes,
umz);

VisIt_VariableData_alloc(&conn);
VisIt_VariableData_setDataI(conn, VISIT_OWNER_SIM, 1,

lconnectivity, connectivity);

VisIt_UnstructuredMesh_setCoordsXYZ(h, x, y, z);
VisIt_UnstructuredMesh_setConnectivity(h, umnzones, conn);

}
}

return h;
}

Listing 5-51: funstructured.f: Fortran language example for returning an unstructured mesh.

subroutine simulate_one_timestep()
implicit none
include "visitfortransiminterface.inc"

ccc UNSTRUCTURED common block (shared with visitgetmesh)
integer NNODES, NZONES, LCONN
parameter (NNODES = 16)
parameter (NZONES = 5)
parameter (LCONN = 36)
real umx(NNODES), umy(NNODES), umz(NNODES)
integer connectivity(LCONN)
common /UNSTRUCTURED/ umx, umy, umz, connectivity
save /UNSTRUCTURED/

c Data values
data umx/0.,2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4.,4./
Writing data access code 196

Instrumenting a simulation code

data umy/0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,0./
data umz/2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2.,0./
data connectivity/VISIT_CELL_HEX, 0,1,2,3,4,5,6,7,

. VISIT_CELL_HEX, 4,5,6,7,8,9,10,11,

. VISIT_CELL_PYR, 8,9,10,11,12,

. VISIT_CELL_WEDGE, 1,14,5,2,15,6,

. VISIT_CELL_TET, 1,14,13,5/
end

c---
c visitgetmesh
c---

integer function visitgetmesh(handle, domain, name, lname)
implicit none
character*8 name
integer handle, domain, lname
include "visitfortransimV2interface.inc"

ccc UNSTRUCTURED common block (shared with simulate_one_timestep)
integer NNODES, NZONES, LCONN
parameter (NNODES = 16)
parameter (NZONES = 5)
parameter (LCONN = 36)
real umx(NNODES), umy(NNODES), umz(NNODES)
integer connectivity(LCONN)
common /UNSTRUCTURED/ umx, umy, umz, connectivity

ccc local variables
integer h, x, y, z, conn, err

h = VISIT_INVALID_HANDLE
if(visitstrcmp(name, lname, "unstructured3d", 14).eq.0) then

c Create an unstructured mesh here
if(visitucdmeshalloc(h).eq.VISIT_OKAY) then

err = visitvardataalloc(x)
err = visitvardataalloc(y)
err = visitvardataalloc(z)
err = visitvardatasetf(x,VISIT_OWNER_SIM,1,NNODES,umx)
err = visitvardatasetf(y,VISIT_OWNER_SIM,1,NNODES,umy)
err = visitvardatasetf(z,VISIT_OWNER_SIM,1,NNODES,umz)

err = visitvardataalloc(conn)
err = visitvardataseti(conn,VISIT_OWNER_SIM,1,LCONN,

. connectivity)

err = visitucdmeshsetcoordsxyz(h, x, y, z)
err = visitucdmeshsetconnectivity(h, NZONES, conn)

endif
endif
visitgetmesh = h
end
Writing data access code 197

Instrumenting a simulation code
Figure 5-52: 3D unstructured mesh returned by the previous
code examples

4.9.1 Polyhedral zones in an unstructured mesh

Unstructured mesh connectivity can also contain polyhedral zones, which are N-faced
(where N>3) solid cells that can be arbitrarily complex. Polyhedral cells can serve as a
bridge in between cell types or when you split the faces of one cell that needs to connect to
several adjacent cells as with an AMR level transition. VisIt breaks up polyhedral cells
into tetrahedrons and pyramids, internally after they are received from the simulation.
Polyhedral cells are described in the connectivity by VISIT_CELL_POLYHEDRON,
followed by the number of faces, followed by each face. Each polyhedral face is a polygon
and is represented in the connectivity by the number of nodes in the face, followed by the
node indices that make up the face.

Listing 5-53: polyhedral.c: C-Language example for returning polyhedral zones.

int connectivity[] = {
VISIT_CELL_HEX,

0,1,5,4,3,2,6,7,
VISIT_CELL_POLYHEDRON,

9, /* # faces*/
4, /*ids*/ 4,5,6,7,
5, /*ids*/ 8,4,7,14,11,
5, /*ids*/ 14,7,6,16,15,
5, /*ids*/ 16,6,5,10,13,
5, /*ids*/ 10,5,4,8,9,
4, /*ids*/ 9,8,11,12,
Writing data access code 198

Instrumenting a simulation code
4, /*ids*/ 10,9,12,13,
4, /*ids*/ 12,11,14,15,
4, /*ids*/ 13,12,15,16,

VISIT_CELL_HEX,
8,9,18,17,11,12,21,20,

VISIT_CELL_HEX,
9,10,19,18,12,13,22,21,

VISIT_CELL_HEX,
11,12,21,20,14,15,24,23,

VISIT_CELL_HEX,
12,13,22,21,15,16,25,24

};

Polyhedral cell

Figure 5-54: Polyhedral zone used to connect other hex zones

4.10 AMR meshes

AMR stands for adaptive mesh refinement. This term describes a structured mesh where
rectangular regions of zones subdivide uniformly, by a factor, in regions of the mesh
where more detail is required. The newly refined region forms a new mesh, often called a
patch, that can be thought of as an overlay on top of the original coarser data. This
refinement process repeats until the zones of interest are sufficiently small to capture
enough detail about the phenomena being modeled. Since each refined layer overlays its
parent layer, AMR refinement levels are treated hierarchically. In VisIt, each individual
Writing data access code 199

Instrumenting a simulation code

patch in the hierarchy becomes a separate domain. The meshes for each domain are
themselves just rectilinear meshes and can be returned as such from the mesh data access
callback function.

Level 0

Level 1

Level 2

Patch 0 Patch 1

Patch 2 Patch 3

Figure 5-55: AMR mesh colored by patch number with level hiearchy shown (right)

4.10.1 Returning metadata

AMR meshes require some additional metadata to be returned. Since AMR meshes have
both patches and levels those different subset concepts must be mapped to subset types
that VisIt supports. Patches should be mapped to domains and levels should be mapped to
groups, which in VisIt parlance, are groups of domains. You can set the number of groups
by calling VisIt_MeshMetaData_setNumGroups in C or
visitmdmeshsetnumgroups in Fortran. The metadata must contain the patch to
level mapping for each patch, which aids VisIt in determining the AMR hierarchy. You
can set the patch to level mapping for each patch by calling
VisIt_MeshMetaData_addGroupId from C, or visitmdmeshsetgroupids
from Fortran. The metadata code listings for setting the patch to level mapping assumes
the example code has defined an integer array called level that contains a level number for
each domain in the AMR mesh.

The metadata can also be changed to set the domain and group titles and piece names to
names that better represent AMR meshes. For example, the “Domains” title that is
eventually shown in VisIt’s Subset window can be changed by setting the mesh
metadata’s domain title to “Patches”. The individual domain names can be set but we will
set the domain piece name to cause all of our domains to be named “patch0”, “patch1”,
Writing data access code 200

Instrumenting a simulation code
... and so on. The same type of name substitution can be done for groups so they appear in
VisIt as levels.

Listing 5-56: amr.c: C-Language example for returning a AMR metadata.

/* Set the first mesh’s properties.*/
if(VisIt_MeshMetaData_alloc(&mmd) == VISIT_OKAY)
{

/* Set the mesh’s properties.*/
VisIt_MeshMetaData_setName(mmd, "amr");
VisIt_MeshMetaData_setMeshType(mmd, VISIT_MESHTYPE_AMR);
VisIt_MeshMetaData_setTopologicalDimension(mmd, 2);
VisIt_MeshMetaData_setSpatialDimension(mmd, 2);
VisIt_MeshMetaData_setNumDomains(mmd, NPATCHES);
VisIt_MeshMetaData_setDomainTitle(mmd, "Patches");
VisIt_MeshMetaData_setDomainPieceName(mmd, "patch");
VisIt_MeshMetaData_setNumGroups(mmd, 3);
VisIt_MeshMetaData_setGroupTitle(mmd, "Levels");
VisIt_MeshMetaData_setGroupPieceName(mmd, "level");
for(i = 0; i < NPATCHES; ++i)

VisIt_MeshMetaData_addGroupId(mmd, level[i]);
VisIt_MeshMetaData_setXUnits(mmd, "cm");
VisIt_MeshMetaData_setYUnits(mmd, "cm");
VisIt_MeshMetaData_setXLabel(mmd, "Width");
VisIt_MeshMetaData_setYLabel(mmd, "Height");

VisIt_SimulationMetaData_addMesh(md, mmd);
}

Listing 5-57: famr.f: Fortran-Language example for returning AMR metadata.

c Add a 2D AMR mesh
if(visitmdmeshalloc(mmd).eq.VISIT_OKAY) then

err = visitmdmeshsetname(mmd, "amr", 3)
err = visitmdmeshsetmeshtype(mmd, VISIT_MESHTYPE_AMR)
err = visitmdmeshsettopologicaldim(mmd, 2)
err = visitmdmeshsetspatialdim(mmd, 2)
err = visitmdmeshsetnumdomains(mmd, 4)
err = visitmdmeshsetdomaintitle(mmd, "patches", 7)
err = visitmdmeshsetdomainpiecename(mmd, "patch", 5)
err = visitmdmeshsetnumgroups(mmd, 3)
err = visitmdmeshsetgrouptitle(mmd, "levels", 6)
err = visitmdmeshsetgrouppiecename(mmd, "level", 5)
do 1400 i=1,NPATCHES

err = visitmdmeshsetgroupids(mmd, level(i))
1400 continue

err = visitmdmeshsetxunits(mmd, "cm", 2)
err = visitmdmeshsetyunits(mmd, "cm", 2)
err = visitmdmeshsetxlabel(mmd, "Width", 5)
err = visitmdmeshsetylabel(mmd, "Height", 6)
err = visitmdsimaddmesh(md, mmd)
Writing data access code 201

Instrumenting a simulation code
endif

4.10.2 Domain nesting

0 91 2 3 4 5 6 7 8

6 7 8 9 10 11 12 13 14 15 16 17 18 19

20,21 38,39

Figure 5-58: AMR mesh zone indexing

The real trick to AMR meshes is
telling VisIt how to heirarchically
group them so VisIt will treat them
as AMR meshes. Part of this is
achieved by indicating the level
for each patch in the metadata.
Since AMR meshes contain
multiple levels of detail that will
be handled simultaneously, any
given place on the mesh could be
several levels thick. VisIt avoids
this by snipping out regions of
coarser patches where more-
resolved patches are available. The
resulting AMR data consist of a
single surface of data at varying
resolutions. In order to perform
this operation, VisIt uses ghost
zones to skip over zones where
finer data exist. Consequently,
VisIt must know how patches nest
within one another. For this

purpose, libsim provides the DomainNesting object. The DomainNesting object
is returned by a separate data access callback function that can be registered using the
VisItSetGetDomainNesting function.

The DomainNesting object contains the refinement ratios for each level as well as per-
patch IJK indices for each patch. The IJK indices are specified relative to the level in
which the patch exists and a patch must be contained within its parent patch. Our example
AMR mesh has 3 levels and 4 patches. Patch 0, which is in level 0 is a 10x10 rectilinear
grid whose zone indices range 0:9 in both I and J. Patch 1 is in level 1 in the AMR
hierarchy so its possible I and J ranges, were it to cover all of its parent patch, are both
0:19 since there is a refinement ratio of 2 in both I and J. This means that each successive
level in the AMR mesh will have 2x the number of cells in I and J. The refinement ratio is
customizable on a per-level basis and can differ for I and J. Taking the refinement ratio
into account, you can see that level 2 would have twice the number of zones as level 1, for
a zone range of 0:39. In general, the smallest possible index for a level is 0 though this
value can’t always be used if patches are refined offset to their parent’s origin. The largest
possible index is NX*ratiox

level-1 for I and NY*ratioy
level-1 for J where NX,NY are the

number of zones in the level0 mesh.
Writing data access code 202

Instrumenting a simulation code

Back to the example program, the zone indices for the 4 patches are:

Patch min I max I min J max J

0 0 9 0 9

1 6 19 2 17

2 20 29 8 27

3 30 39 8 27

The example program stores the I indices in the rmxext array, stored min followed by
max on a per patch basis. J indices are stored the same way in the rmyext array. The
level array stores the level to which each patch belongs. The cpatch array stores a list
of child patches for each patch with no child patches designated as -1. The ncpatch
array contains the number of child patches for each patch.

The first step in initializing a DomainNesting object is to set the number of patches,
levels, and dimensions into it using the
VisIt_DomainNesting_set_dimensions or
visitdnestingsetdimensions functions. Next, set the refinement level for each
level in the AMR hierarchy using the
VisIt_DomainNesting_set_levelRefinement or
visitdnestingsetlevelrefinement functions. Note that levels must start their
numbering at zero. The next step is to specify the domain nesting for each patch in the
AMR hierarchy. The domain nesting is specified using the patch’s min and max I,J,K
values stored in an integer array. The list of child patches for the current patch is also given
as part of the domain nesting information. Domain nesting information for a patch is
recorded using the VisIt_DomainNesting_set_nestingForPatch and
visitdnestingsetnestingforpatch functions. Like level numbers, patch
numbers begin at zero.

Listing 5-59: amr.c: C-Language example for returning domain nesting.

/* AMR mesh */
#define NPATCHES 4
float rmx[NPATCHES][2] = {{0., 10.}, {3., 10.}, {5., 7.5}, {7.5,
10.}};
float rmy[NPATCHES][2] = {{0., 10.}, {1., 9.}, {2., 7.}, {2., 7.}};
int rmxext[NPATCHES][2] = {{0,9}, {6,19}, {20,29}, {30,39}};
int rmyext[NPATCHES][2] = {{0,9}, {2,17}, {8,27}, {8,27}};
int level[NPATCHES] = {0, 1, 2, 2};
int ncpatch[NPATCHES] = {1,2,0,0};
int cpatch[NPATCHES][2] = {{1,-1},{2,3},{-1,-1},{-1,-1}};

visit_handle
SimGetDomainNesting(const char *name, void *cbdata)
{
Writing data access code 203

Instrumenting a simulation code
visit_handle h = VISIT_INVALID_HANDLE;

if(VisIt_DomainNesting_alloc(&h) != VISIT_ERROR)
{

#define XMIN 0
#define YMIN 1
#define ZMIN 2
#define XMAX 3
#define YMAX 4
#define ZMAX 5

int i, dom, nlevels = 3;
int ratios[3] = {2,2,1}, ext[6]={0,0,0,0,0,0}, patch[2]={0,0};

VisIt_DomainNesting_set_dimensions(h, NPATCHES, nlevels, 2);

VisIt_DomainNesting_set_levelRefinement(h, 0, ratios);
VisIt_DomainNesting_set_levelRefinement(h, 1, ratios);
VisIt_DomainNesting_set_levelRefinement(h, 2, ratios);

for(dom = 0; dom < NPATCHES; ++dom)
{

ext[XMIN] = rmxext[dom][0];
ext[YMIN] = rmyext[dom][0];
ext[ZMIN] = 0;
ext[XMAX] = rmxext[dom][1];
ext[YMAX] = rmyext[dom][1];
ext[ZMAX] = 0;
for(i = 0; i < ncpatch[dom]; ++i)

patch[i] = cpatch[dom][i];
VisIt_DomainNesting_set_nestingForPatch(h, dom, level[dom],

patch, ncpatch[dom], ext);
}

}

return h;
}

Listing 5-60: famr.f: Fortran-Language example for returning domain nesting.

c--
c visitgetdomainnesting
c--

integer function visitgetdomainnesting(name, lname)
implicit none
character*8 name
integer lname
include "visitfortransimV2interface.inc"

ccc AMRMESH common block
integer NPATCHES
parameter (NPATCHES = 4)
real rmx(2, NPATCHES), rmy(2, NPATCHES)
integer rmxext(2, NPATCHES), rmyext(2, NPATCHES)
Writing data access code 204

Instrumenting a simulation code
integer level(NPATCHES), ncpatch(NPATCHES)
integer cpatch(2, NPATCHES)
common /AMRMESH/ rmx,rmy,rmxext,rmyext,level,ncpatch,cpatch

ccc AMRMESH data
data rmx/0., 10., 3., 10., 5., 7.5, 7.5, 10./
data rmy/0., 10., 1., 9., 2., 7., 2., 7./
data rmxext/0,9, 6,19, 20,29, 30,39/
data rmyext/0,9, 2,17, 8,27, 8,27/
data level/0, 1, 2, 2/
data ncpatch/1,2,0,0/
data cpatch/1,-1,2,3,-1,-1,-1,-1/

ccc local vars
integer XMIN,YMIN,ZMIN,XMAX,YMAX,ZMAX
parameter (XMIN = 1)
parameter (YMIN = 2)
parameter (ZMIN = 3)
parameter (XMAX = 4)
parameter (YMAX = 5)
parameter (ZMAX = 6)
integer h, i, err, dom, ratios(3), ext(6), patch(2)
data ratios/2,2,1/
data ext/0,0,0,0,0,0/
data patch/0,0/

if(visitdnestingalloc(h).eq.VISIT_OKAY) then
err = visitdnestingsetdimensions(h, 4, 3, 2)

err = visitdnestingsetlevelrefinement(h, 0, ratios)
err = visitdnestingsetlevelrefinement(h, 1, ratios)
err = visitdnestingsetlevelrefinement(h, 2, ratios)

do 1800 dom = 1,4
ext(XMIN) = rmxext(1, dom)
ext(YMIN) = rmyext(1, dom)
ext(ZMIN) = 0
ext(XMAX) = rmxext(2, dom)
ext(YMAX) = rmyext(2, dom)
ext(ZMAX) = 0
do 1700 i=1,ncpatch(dom)

patch(i) = cpatch(i, dom)
1700 continue

err = visitdnestingsetnestingforpatch(h,dom-1,level(dom),
. patch, ncpatch(dom), ext)

1800 continue
endif
visitgetdomainnesting = h
end
Writing data access code 205

Instrumenting a simulation code
4.11 CSG meshes

VisIt supports Constructive Solid Geometry (CSG) meshes. CSG meshes are defined by
volumetric regions that are combined using boolean operators. By combining regions in
various ways, one can arrive at very complex geometries using a very compact
description. The first step in creating a CSG mesh is to create the set of boundaries that
will be used to create regions. A boundary is a primitive or an analytical surface such as a
plane, cone, sphere, or cylinder. Each boundary is described by a set of coefficients. Once
a boundary has been defined, it is turned into a region by instancing it using a unary
OUTER or INNER operator. The instanced region defines a volume that is either inside or
outside of the boundary. Once the region is defined, it can be combined with other regions
using boolean operators such as INTERSECT (and) or UNION (or). Once a final region
has been defined, it can be promoted to a “zone”, which is the CSG term for what VisIt
considers a domain.

4.11.1 CSG boundaries

CSG boundaries are primitives and analytical surfaces that define the shape of regions
used in boolean operations. Boundaries are described by a set of coefficients appended to
an array. The types of boundaries that can be used in VisIt’s CSG meshes, as well as their
coefficients, are described in the following tables. The names of the boundary types
contain a suffix that suggests the coefficients required by the boundary.

Suffix Meaning

G generalized form (n values, depends on type)

P Point (3 values x,y,z in 3D. 2 values x,y in 2D)

N Normal (3 values Nx,Ny,Nz in 3D. 2 values Nx,Ny in
2D)

R Radius (1 value)

A Angle (1 value in degrees)

L Length (1 value)

X X-intercept (1 value)

Y Y-intercept (1 value)

Z Z-intercept (1 value)

K Arbitrary integer (1 value)

F Planar face defined by point-normal (6 values)
Writing data access code 206

Instrumenting a simulation code
Boundary Description

VISIT_CSG_QUADRIC_G 2 2General quadric with 10 coefficients for x2, y , z , xy, yz,
xz, x, y, z, 1

VISIT_CSG_SPHERE_PR Sphere defined by 4 coefficients: center point and radius

VISIT_CSG_PLANE_X Plane X=constant with 1 coefficient

VISIT_CSG_PLANE_Y Plane Y=constant with 1 coefficient

VISIT_CSG_PLANE_Z Plane Z=constant with 1 coefficient

VISIT_CSG_PLANE_PN Plane with 6 coefficients: origin, normal

VISIT_CSG_PLANE_PPP Plane with 9 coefficients. The plane is specified by 3
points in the plane.

VISIT_CSG_CYLINDER_PNLR Cylinder with 8 coefficients: point, normal, length, radius

VISIT_CSG_CYLINDER_PPR Cylinder with 7 coefficients: 2 points that make up the
endpoints and a radius perpendicular to the defined line
segment.

VISIT_CSG_CONE_PNLA Cone with 8 coefficients: point, normal, length, angle

VISIT_CSG_CONE_PPA Cone with 7 coefficients: 2 points that make up the end-
points and an angle that opens up from one of the end-
points.

Note that there are more boundary types defined in the VisItInterfaceTypes_V2.h header
file which are not yet actually implemented in VisIt. Only the boundary types in the table
are implemented. This leaves out some commonly-used convenient primitives such as
hexahedra. Hexahedrons in particular can be created using 6 VISIT_CSG_PLANE_PN
planes: 2 for the X direction, 2 for the Y direction, and 2 for the Z direction. The X planes
can isolate a range of X values, Y planes can isolate Y values, and Z planes can isolate Z
values using an INTERSECT operation. Then the X and Y regions can be intersected and
the resulting region can be intersected with the Z region to yield a hexahedron.

4.11.2 CSG operators

CSG meshes are produced by defining regions and combining them using various
operators. The table below contains a list of the most common operators as well as their
usage. Regions are encoded by storing operators and operands into 3 parallel arrays:
typeflags, left, and right. By parallel arrays, we mean that an index in one array
corresponds to an index in the other arrays as well. The typeflags array contains the
operator being used in the operation. The left array contains the index of a boundary or the
index of a region. The same is true for the right array unless the operator being used is a
Writing data access code 207

Instrumenting a simulation code
unary operator, in which case the entry in the right array will contain -1. Suppose the
typeflags, left, right arrays already contain region definitions in indices 0 and 1 and we
want to take their union to produce a new region in index 2. We would insert
VISIT_CSG_UNION into typeflags[2], 0 into left[2], and 1 into right[2].

Operator Type Description

VISIT_CSG_INNER unary Turn a boundary into a region where the vol-
ume is enclosed by the boundary.

VISIT_CSG_OUTER unary Turn a boundary into a region where the vol-
ume exists outside of the boundary.

VISIT_CSG_UNION binary Boolean OR operator. Combine 2 regions into
a new region that is the union of both regions.

VISIT_CSG_INTERSECT binary Boolean AND operator. Create a new region
that is the intersection of both regions.

VISIT_CSG_DIFF binary Subtract one region from another.

VISIT_CSG_COMPLIMENT unary Boolean NOT operator. Create a new region
that occupies the opposite volume from the
input region.

4.11.3 Creating a CSG mesh

Creation of a CSG mesh is a three step process. First, you must create the boundaries that
will be used to build up the regions on which you’ll operate. Second, you instantiate the
regions using the boundaries and perform operations on them to arrive at a final shape.
Third, you take the final shapes and add their region numbers into a zone list so each
region can function as a separate domain in VisIt.

Boundaries are created by populating the boundary type and coefficient arrays. The type
array contains the types of the boundaries. The coefficient array contains the coefficients
for each boundary with one appended into the array after another. For example if you
wanted to add a VISIT_CSG_SPHERE_PR boundary to the CSG definition, you would
add VISIT_CSG_SPHERE_PR to the first element in the type array then you would add a
point (3 values) and a radius (1 value) to elements 0,1,2,3 in the coefficients array. The
next boundary’s type would go into element 1 in the type array and its coefficients would
begin at element 4 in the coefficients array.

After boundaries have been created, they must be turned into regions. To turn a boundary
into a region, you must add the index of the boundary into the left array and -1 into the
right array while adding either the VISIT_CSG_INNER or VISIT_CSG_OUTER
operators into the operators array. All of these values are added at the same element index
in their respective arrays. Once a region has been defined, it can be operated on by the
Writing data access code 208

Instrumenting a simulation code

various CSG operators by adding its region index into the left or right arrays and adding a
CSG operator in the operators array.

Each completed region can be promoted to a CSG zone, which means that VisIt will plot it
as a domain. The entire CSG mesh can be composed of one or more zones but the CSG
description must always contain the definitions of all CSG zones to ensure that it gets
discretized properly. CSG meshes having more than one zone will can operated on in
parallel by VisIt.

4.11.4 CSG example

Boundaries Regions Zones

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

9

10

intersect

intersect

intersect

union

intersect

outer

inner

outer

outer

outer

outer

Figure 5-61: CSG boundaries, regions, and zones

The CSG example depicted in Figure 5-61 shows a washer and inside (intersecting) of that
washer is another vertical washer which rotates in the simulation. The example is shown
with 2D graphics for simplicity. In the simulation, all of the boundaries are 3D. The
rotation of the vertical washer is achieved by altering the plane origin and normal for
boundaries 4 and 5. The washers are created by a hierarchy of CSG operations. Operations
0 through 5 create regions from boundaries. Operation 6 intersects regions 0 and 1 to
create a hollow sphere. Operations 7 intersects regions 2 and 3 to create a slab, as does
operation 8. Operation 9 unites two slabs to form an extruded “plus sign”. Operation 10
Writing data access code 209

Instrumenting a simulation code

intersects the hollow sphere from operation 6 and the plus sign from operation 9 to
produce the two washers of our final shape, shown in Figure 5-62.

Figure 5-62: CSG mesh example

The code needed to produce the CSG mesh in this example is shown in the following code
listing.

Listing 5-63: csg.c: C-Language example for returning a CSG mesh.

/*************************** CSG Mesh variables *****************/
double csg_extents[] = {-11., -11., -11., 11., 11., 11.};

/* CSG Boundaries */
int csg_bound_types[] = {

 VISIT_CSG_SPHERE_PR,
 VISIT_CSG_SPHERE_PR,
 VISIT_CSG_PLANE_PN,
 VISIT_CSG_PLANE_PN,
 VISIT_CSG_PLANE_PN,
 VISIT_CSG_PLANE_PN

};

float csg_bound_coeffs[] = {
 0., 0., 0., 8., /* sphere 1*/
 0., 0., 0., 10., /* sphere 2*/
 0., 2., 0., 0., -1., 0., /* plane 1 point, normal*/
 0., -2., 0., 0., 1., 0., /* plane 2 point, normal*/
 2., 0., 0., -1., 0., 0., /* plane 3 point, normal*/
 -2., 0., 0., 1., 0., 0. /* plane 4 point, normal*/

};
Writing data access code 210

Instrumenting a simulation code
int csg_num_bound_coeffs = sizeof(csg_bound_coeffs) / sizeof(float);
int csg_num_bound_types = sizeof(csg_bound_types) / sizeof(int);

/* CSG Regions */
int csg_region_operations[] =
{

 VISIT_CSG_OUTER, /* 0: outside of inner sphere */
 VISIT_CSG_INNER, /* 1: inside of outer sphere */
 VISIT_CSG_OUTER, /* 2: plane 1 */
 VISIT_CSG_OUTER, /* 3: plane 2 */
 VISIT_CSG_OUTER, /* 4: plane 3 */
 VISIT_CSG_OUTER, /* 5: plane 4 */
 VISIT_CSG_INTERSECT, /* 6: intersection of sphere 0,1 */
 VISIT_CSG_INTERSECT, /* 7: intersection of planes 1,2 */
 VISIT_CSG_INTERSECT, /* 8: intersection of planes 3,4 */
 VISIT_CSG_UNION, /* 9 add the 2 blocks together */
 VISIT_CSG_INTERSECT /* 10: intersect shell with slabs*/

};

/* index 0 1 2 3 4 5 6 7 8 9 10*/
int csg_leftids[] = { 0, 1, 2, 3, 4, 5, 0, 2, 4, 7, 6};
int csg_rightids[] = {-1, -1, -1, -1, -1, -1, 1, 3, 5, 8, 9};
int csg_num_region_operations = sizeof(csg_region_operations) /
sizeof(int);

/* CSG Zones */
int csg_zonelist[] = {10};
int csg_nzones = sizeof(csg_zonelist) / sizeof(csg_zonelist[0]);

/*************************** CSG Mesh variables *******************/
visit_handle
SimGetMesh(int domain, const char *name, void *cbdata)
{

visit_handle h = VISIT_INVALID_HANDLE;

if(strcmp(name, "csg") == 0)
{

if(VisIt_CSGMesh_alloc(&h) != VISIT_ERROR)
{

visit_handle typeflags, leftids, rightids, zonelist;
visit_handle boundaryTypes, boundaryCoeffs;

/* Fill in the CSG mesh’s data values. */
VisIt_VariableData_alloc(&boundaryTypes);
VisIt_VariableData_setDataI(boundaryTypes, VISIT_OWNER_SIM,

1, csg_num_bound_types, csg_bound_types);
VisIt_CSGMesh_setBoundaryTypes(h, boundaryTypes);

VisIt_VariableData_alloc(&boundaryCoeffs);
VisIt_VariableData_setDataF(boundaryCoeffs, VISIT_OWNER_SIM,

1, csg_num_bound_coeffs, csg_bound_coeffs);
VisIt_CSGMesh_setBoundaryCoeffs(h, boundaryCoeffs);

/* Set the extents */
Writing data access code 211

Instrumenting a simulation code

VisIt_CSGMesh_setExtents(h, csg_extents, csg_extents+3);

/* Set the regions */
VisIt_VariableData_alloc(&typeflags);
VisIt_VariableData_setDataI(typeflags, VISIT_OWNER_SIM,

1, csg_num_region_operations, csg_region_operations);

VisIt_VariableData_alloc(&leftids);
VisIt_VariableData_setDataI(leftids, VISIT_OWNER_SIM,

1, csg_num_region_operations, csg_leftids);

VisIt_VariableData_alloc(&rightids);
VisIt_VariableData_setDataI(rightids, VISIT_OWNER_SIM,

1, csg_num_region_operations, csg_rightids);

VisIt_CSGMesh_setRegions(h, typeflags, leftids, rightids);

/* Set the zonelist */
VisIt_VariableData_alloc(&zonelist);
VisIt_VariableData_setDataI(zonelist, VISIT_OWNER_SIM,

1, 1, csg_zonelist);
VisIt_CSGMesh_setZonelist(h, zonelist);

}
}

return h;
}

4.12 Interleaved coordinates

All of the mesh examples so far have used separate coordinate arrays for the X, Y, and Z
coordinates. For certain mesh types, it is also possible to provide coordinates using one
array that contains all XY or XYZ coordinates, an approach called interleaved
coordinates. Interleaved coordinates are specified in an array like this for 2D:
x0,y0,x1,y1,...xn,yn and like this for 3D: x0,y0,z0,x1,y1,z1,...,xn,yn,zn. The mesh objects that
support interleaved coordinates have functions for providing interleaved coordinates and
these functions can be called instead of the typical functions that specify XY or XYZ
coordinates. The coordinates are passed to these functions as a single VariableData
object with 2 or 3 components, depending on the mesh’s dimensionality.

Mesh type Function

Curvilinear int VisIt_CurvilinearMesh_setCoords2(visit_handle obj,
int dims[2], visit_handle coords);

int VisIt_CurvilinearMesh_setCoords3(visit_handle obj,
int dims[3], visit_handle coords);
Writing data access code 212

Instrumenting a simulation code

Mesh type Function

Point int VisIt_PointMesh_setCoords(visit_handle obj,
visit_handle coords);

Unstruc-
tured

int VisIt_UnstructuredMesh_setCoords(visit_handle obj,
visit_handle coords);

4.13 Data access function for variables

This chapter has so far shown how to instrument a simulation code so VisIt can connect to
it and read out meshes so they can be plotted. This section will illustrate how to add a data
access function that lets VisIt access your simulation’s variable data. Reading variable data
requires a new data access function. In this case, you will register a new data access
function by calling the VisItSetGetVariable function. If your simulation is written
in Fortran, you must implement the visitgetvariable function to return your
simulation’s variable data. This section will show how to return your simulation’s variable
data so they can be visualized with VisIt.

4.13.1 Returning a simulation’s data array

The data access function for variables returns a VariableData object, which was
introduced in Section 4.5.2. The VariableData object is a simple wrapper the array
that you want to return and includes a little information about the array, including its type,
number of components, number of tuples, and which program owns the array data. The
owner flag indicates whether or not VisIt will be responsible for freeing the variable data
array when it is no longer needed. If you pass VISIT_OWNER_SIM then VisIt will never
free the data because the simulation owns the variable’s memory. If you pass
VISIT_OWNER_VISIT then VisIt will free the variable’s memory when it is no longer
needed. VISIT_OWNER_COPY is a convenience owner type that makes it easy to pass
stack data to VisIt since it copies the data that were passed so they can be freed later by
VisIt.

Returning variable data is as simple as returning an array with number of components set
to 1 and the number of tuples set to the array length. Other types of variables such as
vectors or tensors will have their component count increased to 2 or 3 for vectors, 9 for
tensors, and any number greater than 1 for array data or label data. Data are stored in the
array such that data for each tuple are stored before data for the next tuple appears in the
array: (tuple0comp0, tuple0comp1, tuple0comp2, tuple1comp0, tuple1comp1,
tuple1comp2,...). The C interface for libsim provides different functions for setting
different types of data into a VariableData object. The functions are called:
VisIt_VariableData_setDataC for character data,
VisIt_VariableData_setDataI for integer data,
Writing data access code 213

Instrumenting a simulation code
VisIt_VariableData_setDataF for float data, and
VisIt_VariableData_setDataD for double precision data.

Listing 5-64: scalar.c: C-Language example for returning a variable.

int rmesh_dims[] = {4, 5, 1};
float zonal[] = {1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.};
int cmesh_dims[] = {4, 3, 2};
double nodal[2][3][4] = {

{{1.,2.,3.,4.},{5.,6.,7.,8.},{9.,10.,11.,12}},
{{13.,14.,15.,16.},{17.,18.,19.,20.},{21.,22.,23.,24.}}

};
visit_handle
SimGetVariable(int domain, const char *name, void *cbdata)
{

visit_handle h = VISIT_INVALID_HANDLE;
int nComponents = 1, nTuples = 0;

if(VisIt_VariableData_alloc(&h) == VISIT_OKAY)
{

if(strcmp(name, "zonal") == 0)
{

nTuples = (rmesh_dims[0]-1) * (rmesh_dims[1]-1);
VisIt_VariableData_setDataF(h, VISIT_OWNER_SIM, nComponents,

nTuples, zonal);
}
else if(strcmp(name, "nodal") == 0)
{

nTuples = cmesh_dims[0] * cmesh_dims[1] *
cmesh_dims[2];

VisIt_VariableData_setDataD(h, VISIT_OWNER_SIM, nComponents,
nTuples, (double*)nodal);

}
}
return h;

}

The Fortran interface provides the visitvardatasetc, visitvardataseti,
visitvardatasetf, and visitvardatasetd functions for passing your
simulation’s scalar data back to VisIt. The functions behave the same as their C
equivalents.

Listing 5-65: fscalar.f: Fortran language example for returning a variable.

c--
c visitgetvariable
c--

integer function visitgetvariable(handle, domain, name, lname)
implicit none
character*8 name
Writing data access code 214

Instrumenting a simulation code
integer handle, domain, lname
include "visitfortransimV2interface.inc"

ccc RECTMESH data
integer NX, NY
parameter (NX = 4)
parameter (NY = 5)
integer rmdims(3)
real zonal(NX-1,NY-1)

ccc CURVMESH data
integer CNX, CNY, CNZ
parameter (CNX = 4)
parameter (CNY = 3)
parameter (CNZ = 2)
integer cmdims(3)
double precision nodal(CNX,CNY,CNZ)

ccc local vars
integer h, nvals, err

ccc Data
data rmdims /4, 5, 1/
data zonal/1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12./
data cmdims/CNX,CNY,CNZ/
data nodal/1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13.,14.,15.,

. 16.,17.,18.,19.,20.,21.,22.,23.,24./

h = VISIT_INVALID_HANDLE
if(visitstrcmp(name, lname, "zonal", 5).eq.0) then

c A zonal variable has 1 less value in each dimension as there
c are nodes. Send back REAL data.

if(visitvardataalloc(h).eq.VISIT_OKAY) then
nvals = (rmdims(1)-1) * (rmdims(2)-1)
err = visitvardatasetf(h, VISIT_OWNER_SIM,1,nvals,zonal)

endif
elseif(visitstrcmp(name, lname, "nodal", 5).eq.0) then

c A nodal variable has the same number values in each dimension
c as there are nodes. Send back DOUBLE PRECISION data.

if(visitvardataalloc(h).eq.VISIT_OKAY) then
nvals = cmdims(1) * cmdims(2)* cmdims(3)
err = visitvardatasetd(h, VISIT_OWNER_SIM,1,nvals,nodal)

endif
endif

visitgetvariable = h
end

The variable data access functions in the previous examples build on some of the earlier
mesh data access function examples, specifically the examples that returned rectilinear
and curvilinear meshes. The zonal variable returned in the examples in this section return
data defined on the “mesh2d” rectilinear mesh. The nodal variable returned in the
Writing data access code 215

Instrumenting a simulation code

examples in this section return data on the “mesh3d” curvilinear mesh. Examples of both
variables are shown in Figure 5-66.

Figure 5-66: Examples of scalar variables returned by a variable data access function.

4.14 Data access function for curves

This section illustrates how to add a data access function that lets VisIt access your
simulation’s curve data. Reading curve data requires a new data access function, which is
registered using the VisItSetGetCurve function. If your simulation is written in
Fortran, you must implement the visitgetcurve function to return your simulation’s
curve data.

The data access function for curves returns a CurveData object, which simply contains
handles to 2 VariableData objects that contain the coordinates. This section shows
how to create a data access function for curves so your simulation’s curve data are
available in VisIt.

4.14.1 Adding a curve data access function

Adding a curve data access function means that you have to first write a function and pass
it to VisItSetGetCurve. If you program in C, the curve data access function takes the
name of a curve object and a user-defined pointer as arguments. The basic procedure for
returning curve data is to first check the incoming name against the names of the curves
that your simulation is prepared to return and when one is found, return it to VisIt in a
CurveData object. If your curve data access routine does not recognize the name of the
curve then you can return VISIT_INVALID_HANDLE instead of returning a
CurveData object.

Listing 5-67: curve.c: C-Language example for installing a curve data access function.

visit_handle
Writing data access code 216

Instrumenting a simulation code

SimGetCurve(const char *name, void *cbdata)
{

int h = VISIT_INVALID_HANDLE;
simulation_data *sim = (simulation_data *)cbdata;

if(strcmp(name, "sine") == 0)
{

if(VisIt_CurveData_alloc(&h) != VISIT_ERROR)
{

visit_handle hxc, hyc;

/* Give the arrays to VisIt. VisIt will free them. */
VisIt_VariableData_alloc(&hxc);
VisIt_VariableData_alloc(&hyc);
VisIt_VariableData_setDataF(hxc, VISIT_OWNER_SIM, 1, NPTS,
sim->x);
VisIt_VariableData_setDataF(hyc, VISIT_OWNER_SIM, 1, NPTS,
sim->y);
VisIt_CurveData_setCoordsXY(h, hxc, hyc);

}
}

 return h;
}

In order to return curve data from a Fortran simulation, you must implement the
visitgetcurve function. The function takes 2 arguments: the name of the curve and
the length of that name string, respectively. As in the C interface, the visitgetcurve
function must check the incoming names against the names of the curves that the
simulation has exposed to VisIt via metadata. You can use the visitstrcmp function to
match the incoming name against the names of the known curves.

Listing 5-68: fcurve.f: Fortran language example of a curve data access function.

c--
c visitgetcurve
c--

integer function visitgetcurve(name, lname)
implicit none
character*8 name
integer lname
include "visitfortransimV2interface.inc"

ccc CURVE common block
integer NPTS
parameter (NPTS = 10000)
real pmx(NPTS), pmy(NPTS)
common /CURVE/ pmx, pmy

ccc local vars
integer h, hx, hy, err
Writing data access code 217

Instrumenting a simulation code

h = VISIT_INVALID_HANDLE
if(visitstrcmp(name, lname, "sine", 4).eq.0) then

if(visitcurvedataalloc(h).eq.VISIT_OKAY) then
err = visitvardataalloc(hx)
err = visitvardataalloc(hy)
err = visitvardatasetf(hx, VISIT_OWNER_SIM, 1, NPTS, pmx)
err = visitvardatasetf(hy, VISIT_OWNER_SIM, 1, NPTS, pmy)
err = visitcurvedatasetcoordsxy(h, hx, hy)

endif
endif
visitgetcurve = h
end

Both of the code examples for returning curve data produce a sine curve (code to set X,Y
values for the sine curve is not shown), shown in Figure 5-69.

Figure 5-69: Sine curve produced by the curve data access
function example programs.

4.15 Data access function for materials

This section illustrates how to add a data access function that lets VisIt access your
simulation’s material data. Reading material data requires a new data access function,
which is registered using the VisItSetGetMaterial function. If your simulation is
Writing data access code 218

Instrumenting a simulation code

written in Fortran, you must implement the visitgetmaterial function to return
your simulation’s material data.

The data access function for materials returns a MaterialData object, which contains a
list of material names as well as material data for each cell in your mesh. The number of
cells in the mesh is specified using the VisIt_MaterialData_appendCells
function, which also tells SimV2 to expect you to add material information to the
MaterialData object using functions that add material data on a per cell basis. Note
that MaterialData objects are populated per cell to prevent errors that are common
when providing all of the data in bulk. Material names are assigned a material number
using the VisIt_MaterialData_addMaterial function. The material number that
is returned must be used to identify the material in subsequent function calls that provide
material data about cells. Cells which contain a single material are known as clean cells
while cells with more than one material are known as mixed cells. The
VisIt_MaterialData_addCleanCell function is used to add the data for clean
cells and the VisIt_MaterialData_addMixedCell function is used to add data
for mixed cells. In the case of mixed cells, a list of material ids (as returned from
VisIt_MaterialData_addMaterial) and their relative volume fractions are
passed. The volume fractions indicate a percentage of the cell occupied by a given
material.

Listing 5-70: material.c: C language example of a material data access function.

visit_handle
SimGetMaterial(int domain, const char *name, void *cbdata)
{

visit_handle h = VISIT_INVALID_HANDLE;

/* Allocate a VisIt_MaterialData */
if(VisIt_MaterialData_alloc(&h) == VISIT_OKAY)
{

int i, j, m, cell = 0, arrlen = 0;
int nmats, cellmat[10], matnos[3]={1,2,3};
float cellmatvf[10];

/* The matlist table indicates the material numbers that are
* found in each cell. Every 3 numbers indicates the material
* numbers in a cell. A material number of 0 means that the
* material entry is not used.
*/
int matlist[NY-1][NX-1][3] = {
{{3,0,0},{2,3,0},{1,2,0},{1,0,0}},
{{3,0,0},{2,3,0},{1,2,0},{1,0,0}},
{{3,0,0},{2,3,0},{1,2,3},{1,2,0}}
};

/* The mat_vf table indicates the material volume fractions
* that are found in a cell.
*/
float mat_vf[NY-1][NX-1][3] = {
Writing data access code 219

Instrumenting a simulation code
{{1.,0.,0.},{0.75,0.25,0.}, {0.8125,0.1875, 0.},{1.,0.,0.}},
{{1.,0.,0.},{0.625,0.375,0.},{0.5625,0.4375,0.}, {1.,0.,0.}},
{{1.,0.,0.},{0.3,0.7,0.}, {0.2,0.4,0.4}, {0.55,0.45,0.}}
};

/* Tell the object we’ll be adding cells to it using add*Cell
functions */
VisIt_MaterialData_appendCells(h, (NX-1)*(NY-1));

/* Fill in the VisIt_MaterialData */
VisIt_MaterialData_addMaterial(h, matNames[0], &matnos[0]);
VisIt_MaterialData_addMaterial(h, matNames[1], &matnos[1]);
VisIt_MaterialData_addMaterial(h, matNames[2], &matnos[2]);

for(j = 0; j < NY-1; ++j)
{

for(i = 0; i < NX-1; ++i, ++cell)
{

nmats = 0;
for(m = 0; m < 3; ++m)
{
if(matlist[j][i][m] > 0)
{
cellmat[nmats] = matnos[matlist[j][i][m] - 1];
cellmatvf[nmats] = mat_vf[j][i][m];
nmats++;
}
}
if(nmats > 1)
VisIt_MaterialData_addMixedCell(h, cell, cellmat,
cellmatvf, nmats);
else
VisIt_MaterialData_addCleanCell(h, cell, cellmat[0]);

}
}

}

return h;
}

Apart from using some functions with slightly different names, the Fortran version of a
material data access function is nearly identical to the C version. The algorithm for adding
material data is the same. First, call visitmatdataappendcells to allocate a
number of cells for the material data. Next, get a material id for the material name using
the visitmatdataaddmat function. Finally, build up per cell material information
Writing data access code 220

Instrumenting a simulation code
 and add it to the MaterialData object using the visitmatdataaddmixedcell
and visitmatdataaddcleancell functions.

Listing 5-71: fmaterial.f: Fortran language example of a material data access function.

c--
c visitgetmaterial
c--

integer function visitgetmaterial(domain, name, lname)
implicit none
character*8 name
integer domain, lname
include "visitfortransimV2interface.inc"

ccc RECTMESH
integer NX, NY
parameter (NX = 5)
parameter (NY = 4)

c The matlist table indicates the material numbers that are found in
c each cell. Every 3 numbers indicates the material numbers in a cell.
c A material number of 0 means that the material entry is not used.

integer matlist(3, NX-1, NY-1)
data matlist/3,0,0,2,3,0,1,2,0,1,0,0,

. 3,0,0,2,3,0,1,2,0,1,0,0,

. 3,0,0,2,3,0,1,2,3,1,2,0/
c The mat_vf table indicates the material volume fractions that are
c found in a cell.

real mat_vf(3, NX-1, NY-1)
data mat_vf/1.,0.,0.,0.75,0.25,0.,0.8125,0.1875, 0.,1.,0.,0.,

. 1.,0.,0.,0.625,0.375,0.,0.5625,0.4375,0.,1.,0.,0.,

. 1.,0.,0.,0.3,0.7,0.,0.2,0.4,0.4,0.55,0.45,0./

c Size the material object so it has the right dimensions (equal to
c the number of cells in the mesh. Unstructured grids would have
c /ncells,1,1/ size for the material. That means that the cellid array
c would have one linear index in its first element.

integer err, I, J, m, cellid, nmats, h
integer matno(3), cellmat(3)
real cellmatvf(3)
h = VISIT_INVALID_HANDLE
err = visitmatdataalloc(h)
err = visitmatdataappendcells(h, (NX-1) * (NY-1))
err = visitmatdataaddmat(h, "Water", 5, matno(1))
err = visitmatdataaddmat(h, "Membrane", 8, matno(2))
err = visitmatdataaddmat(h, "Air", 3, matno(3))

cellid = 0
do 2020 J=1,NY-1
do 2010 I=1,NX-1
nmats = 0
do 2000 m=1,3

if(matlist(m,I,J).gt.0) then
nmats = nmats + 1
Writing data access code 221

Instrumenting a simulation code
cellmat(nmats) = matno(matlist(m,I,J))
cellmatvf(nmats) = mat_vf(m,I,J)

endif
2000 continue

if(nmats.gt.1) then
err = visitmatdataaddmixedcell(h,

. cellid, cellmat, cellmatvf, nmats)
else

err = visitmatdataaddcleancell(h,
. cellid, cellmat)
endif
cellid = cellid + 1

2010 continue
2020 continue

visitgetmaterial = h
end

Figure 5-72: Material data returned from data access function

4.16 Data access function for the domain list

The domain list is an object that tells VisIt how many domains there are in your simulation
and to which processors they belong. Domain lists are used by VisIt’s load balancer to
assign work to various processors when running in parallel. The domain list data access
Writing data access code 222

Instrumenting a simulation code

function must be provided if your parallel simulation is to provide data to VisIt. Since
most parallel simulations only ever process a single domain’s worth of data, the domain
list will almost always contain a single domain, though the total number of domains is free
to change. Note that you must provide a domain list when you run a parallel simulation so
VisIt’s load balancer can retrieve domains from the appropriate simulation processors.
Serial simulations do not need to implement a domain list callback function.

If you program in C and you are writing a parallel simulation then you must create a new
function and register it using the VisItSetGetDomainList function. Most of the
time, a simulation will have only a single domain per processor so the domain list will
consist of just the rank of the processor within the global communicator.

Listing 5-73: C-Language example for returning a domain list.

visit_handle
SimGetDomainList(const char *name, void *cbdata)
{

int par_size, par_rank;
visit_handle h = VISIT_INVALID_HANDLE;

MPI_Comm_rank(MPI_COMM_WORLD, &par_rank);
MPI_Comm_size(MPI_COMM_WORLD, &par_size);

if(VisIt_DomainList_alloc(&h) != VISIT_ERROR)
{

visit_handle hdl;

VisIt_VariableData_alloc(&hdl);
VisIt_VariableData_setDataI(hdl, VISIT_OWNER_COPY, 1, 1,
par_rank);
VisIt_DomainList_setDomains(h, par_size, hdl);

}
return h;

}

If you use the Fortran interface then you must implement the visitgetdomainlist
function. The visitgetdomainlist function is called when VisIt needs the number
and distribution of the domains in use by your simulation. You can provide this
information by creating a DomainList object using the visitdomainlistalloc
function, and setting data into it using visitdomainlistsetdomains. The domain
list data consists of a VariableData object that wraps an array of integers. In the case
where each processor has a single domain, you need only create wrap an array that
contains 1 value: the rank of the current processor.

Listing 5-74: fscalarp.f: Fortran language example for returning a domain list.

c--
c visitgetdomainlist
Writing data access code 223

Instrumenting a simulation code
c--
integer function visitgetdomainlist()
implicit none
include "visitfortransimV2interface.inc"

ccc PARALLEL state common block
integer par_rank, par_size
common /PARALLEL/ par_rank, par_size

ccc local vars
integer h, dl, err

c Tell VisIt that there are as many domains as processors and this
c processor just has one of them.

h = VISIT_INVALID_HANDLE
if(visitdomainlistalloc(h).eq.VISIT_OKAY) then

if(visitvardataalloc(dl).eq.VISIT_OKAY) then
err = visitvardataseti(dl, VISIT_OWNER_SIM, 1, 1,

. par_rank)
err = visitdomainlistsetdomains(h, par_size, dl)

endif
endif
visitgetdomainlist = h

end
Writing data access code 224

Index
A
avtMaterial 137

B
BOV file format 9
BOV header file 10
Brick of Floats 10
Brick of Values 10

C
cmake 98
Command line argument -clobber_vlogs 103
Command line argument -debug 104
Command line argument -debug 5 103
Creating a new Silo file 16
CSG meshes 206
CSG operators 207
Curve file format 12
CurveData 216
Cycle 19
Cycles 129

D I
Data extents 72, 134
Dealing with time 18
Debugging logs 103
Debugging your plugin 103
dlopen 147
Double precision 47
Dynamic load balancing 142

E
EMPTY keyword 54
ExpressionMetaData 178

G
Ghost zones 76, 139, 141

H
HDF5 files 13

Inspecting Silo files 16
Interleaved coordinates 212

L
LD_LIBRARY_PATH 167
libsim - VisItAttemptToCompleteConnection
155
libsim - VisItControlInterface_V1.h 147
libsim - VisItDetectInput 155
libsim - VisItDisconnect 156
libsim - visitfortransiminterface.inc 147
libsim - VisItInitializeSocketAndDumpSim-
File 149, 167
libsim - VisItProcessEngineCommand 155,
156
libsim - VisItSetBroadcastIntFunction 151
libsim - VisItSetBroadcastStringFunction 151
libsim - VisItSetCommandCallback 180
libsim - VisItSetParallel 151
libsim - VisItSetParallelRank 151
libsim - VisItSetupEnvionment 149

M
MaterialData 219
MaterialMetaData 177
Materials 83, 84, 85, 86, 137
MeshMetaData 173
MPI 141
226

N
NETCDF files 13

O
Option lists 19

P
Plain text ASCII files 12
Plugin development - ActivateTimestep 142
Plugin development - Auxiliary data 134
Plugin development - avtDatabaseMetaData
107
Plugin development - Curvilinear meshes 117
Plugin development - expression metadata 112
Plugin development - GetAuxiliaryData 134,
135
Plugin development - GetMesh 102, 113, 115,
117, 119, 120, 121, 123
Plugin development - GetVar 102, 126
Plugin development - GetVectorVar 102, 127
Plugin development - libE 91, 141
Plugin development - libI 91
Plugin development - libM 91
Plugin development - material metadata 111
Plugin development - mesh metadata 107
Plugin development - MTMD 92
Plugin development - MTSD 92
Plugin development - Parallelizing your reader
141

Plugin development - Point meshes 119
Plugin development - PopulateDatabaseMeta-
Data 102, 106, 126, 127
Plugin development - Rectilinear meshes 115
Plugin development - Returning a mesh 113
Plugin development - Returning a scalar vari-
able 126
Plugin development - Returning a vector vari-
able 127
Plugin development - Returning cycles and
times 129
Plugin development - Returning ghost zones
139
Plugin development - Returning materials 137
Plugin development - scalar metadata 110
Plugin development - STMD 92
Plugin development - STSD 92
Plugin development - Unstructured meshes 121
Plugin development - Using a VTK reader
class 129
Plugin development - vector metadata 111
Plugin development - xml2cmake 96
Plugin development - xml2info 96
Plugin development - xml2makefile 99
Plugin development - xml2plugin 96
Plugin development - XMLEdit 92
PointMesh 192

S
Silo 9
Silo - browser 16
Silo - DB_CHAR 40
Silo - DB_F77NULL 21
Silo - DB_FLOAT 39
Silo - DB_HDF5 17
Silo - DB_NODECENT 40
Silo - DB_NONCOLLINEAR 24
Silo - DB_PDB 17
Silo - DB_ZONECENT 40
227

Silo - DBAddOption 19
Silo - DBCreate 16
Silo - DBFreeOptlist 19, 34, 46
Silo - DBMakeOptlist 19, 34, 46
Silo - DBOPT_UNITS 46
Silo - DBPutdefvars 47
Silo - dbputdefvars 48
Silo - dbputmat 87
Silo - DBPutMaterial 86
Silo - dbputmmesh 51
Silo - DBPutMultimesh 50
Silo - DBPutMultivar 52, 74
Silo - dbputpm 27
Silo - DBPutPointmesh 26
Silo - DBPutPointVar1 43
Silo - dbputqm 21, 23, 24, 26
Silo - DBPutQuadmesh 20, 21, 24, 83
Silo - DBPutQuadvar1 37, 39, 40, 46
Silo - dbputqv1 40
Silo - DBPutUcdmesh 30
Silo - DBPutUcdvar1 45, 46
Silo - dbputuv1 45
Silo - DBPutZonelist 30
Silo - dbset2dstrlen 48
Silo - header files 14
Silo - linking with 14
SimulationMetaData 172
SimV2 database reader plugin 169
Spatial extents 75, 136
Static load balancing 141
Strategies 2

T
Time 19
Times 129
topological dimension 107

U
Units 46

V
VariableData 185, 213
VisIt_CSGMesh_setBoundaryCoeffs 211
VisIt_CSGMesh_setBoundaryTypes 211
VisIt_CSGMesh_setExtents 212
VisIt_CSGMesh_setRegions 212
VisIt_CSGMesh_setZonelist 212
VisIt_CurveMetaData_alloc 177
VisIt_CurveMetaData_setName 177
VisIt_CurveMetaData_setXLabel 177
VisIt_CurveMetaData_setXUnits 177
VisIt_CurveMetaData_setYLabel 177
VisIt_CurvilinearMesh_alloc 189
VisIt_DomainNesting_set_dimensions 203,
204
VisIt_DomainNesting_set_levelRefinement
203, 204
VisIt_DomainNesting_set_nestingForPatch
203, 204
VisIt_ExpressionMetaData_alloc 178
VisIt_ExpressionMetaData_setDefinition 178
VisIt_ExpressionMetaData_setName 178
VisIt_ExpressionMetaData_setType 178
VisIt_MaterialData_addCleanCell 219, 220
VisIt_MaterialData_addMaterial 219, 220
VisIt_MaterialData_addMixedCell 219, 220
VisIt_MaterialData_appendCells 219, 220
VisIt_MaterialMetaData_addMaterialName
178
VisIt_MaterialMetaData_alloc 177
VisIt_MaterialMetaData_setMeshName 178
VisIt_MaterialMetaData_setName 177
VisIt_MeshMetaData_addGroupId 200, 201
228

VisIt_MeshMetaData_alloc 174
VisIt_MeshMetaData_setDomainPieceName
201
VisIt_MeshMetaData_setDomainTitle 201
VisIt_MeshMetaData_setGroupPieceName
201
VisIt_MeshMetaData_setGroupTitle 201
VisIt_MeshMetaData_setMeshType 174
VisIt_MeshMetaData_setName 174
VisIt_MeshMetaData_setNumGroups 200,
201
VisIt_MeshMetaData_setSpatialDimension
174
VisIt_MeshMetaData_setTopologicalDimensi
on 174
VisIt_MeshMetaData_setXLabel 174
VisIt_MeshMetaData_setXUnits 174
VisIt_MeshMetaData_setYLabel 174
VisIt_MeshMetaData_setYUnits 174
VisIt_MeshMetaData_setZLabel 174
VisIt_MeshMetaData_setZUnits 174
VisIt_PointMesh_alloc 192
VisIt_PointMesh_setCoordsXY 192
VisIt_PointMesh_setCoordsXYZ 192, 193
VisIt_RectilinearMesh_alloc 186
VisIt_RectilinearMesh_setCoordsXY 186, 187
VisIt_RectilinearMesh_setCoordsXYZ 186
VisIt_RectilinearMesh_setRealIndices 186
VisIt_ScalarMetaData 175
VisIt_SimulationMetaData_addCurve 177
VisIt_SimulationMetaData_addExpression
178
VisIt_SimulationMetaData_addMaterial 178
VisIt_SimulationMetaData_addMesh 174
VisIt_SimulationMetaData_addVariable 176
VisIt_SimulationMetaData_alloc 172
VisIt_SimulationMetaData_setCycleTime 172
VisIt_SimulationMetaData_setMode 172
VisIt_UnstructuredMesh_alloc 196
VisIt_UnstructuredMesh_setConnectivity 196
VisIt_UnstructuredMesh_setCoordsXY 194
VisIt_UnstructuredMesh_setCoordsXYZ 194,
196
VisIt_UnstructuredMesh_setRealIndices 195
VisIt_VariableData_alloc 187
VisIt_VariableData_setDataC 213

VisIt_VariableData_setDataD 214
VisIt_VariableData_setDataF 187, 214
VisIt_VariableData_setDataI 213
VisIt_VariableMetaData_alloc 176
VisIt_VariableMetaData_setCentering 176
VisIt_VariableMetaData_setMeshName 176
VisIt_VariableMetaData_setName 176
VisIt_VariableMetaData_setType 176
visit_writer - write_curvilinear_mesh 60
visit_writer - write_point_mesh 63
visit_writer - write_regular_mesh 56
visit_writer - write_unstructured_mesh 64
visitbroadcastintfunction 165
visitbroadcaststringfunction 165
visitcommandcallback 182
visitcurvmeshalloc 191
VisItDataInterface_V2.h 147
visitdetectinput 162
visitdnestingsetdimensions 203, 205
visitdnestingsetlevelrefinement 203, 205
visitdnestingsetnestingforpatch 203, 205
visitdomainlistalloc 223
visitdomainlistsetdomains 223
visitgetcurve 216, 217
visitgetmaterial 219
visitgetmesh 183
visitgetvariable 213
visitinitializesim 161
visitmatdataaddcleancell 221, 222
visitmatdataaddmat 220, 221
visitmatdataaddmixedcell 221, 222
visitmatdataappendcells 220, 221
visitmdcurvealloc 177
visitmdcurvesetname 177
visitmdcurvesetxlabel 177
visitmdcurvesetxunits 177
visitmdcurvesetylabel 177
visitmdexpralloc 179
visitmdexprsetdefinition 179
visitmdexprsetname 179
visitmdexprsettype 179
visitmdmataddmaterialname 178
visitmdmatalloc 178
visitmdmatsetmeshname 178
visitmdmatsetname 178
visitmdmeshsetdomainpiecename 201
229

visitmdmeshsetdomaintitle 201
visitmdmeshsetgroupids 200, 201
visitmdmeshsetgrouppiecename 201
visitmdmeshsetgrouptitle 201
visitmdmeshsetmeshtype 175
visitmdmeshsetname 175
visitmdmeshsetnumdomains 201
visitmdmeshsetnumgroups 200, 201
visitmdmeshsetspatialdim 175
visitmdmeshsettopologicaldim 175
visitmdmeshsetxlabel 175
visitmdmeshsetxunits 175
visitmdmeshsetylabel 175
visitmdmeshsetyunits 175
visitmdmeshsetzlabel 175
visitmdsimaddcurve 177
visitmdsimaddexpression 179
visitmdsimaddmaterial 178
visitmdsimaddmesh 175
visitmdsimaddvariable 176
visitmdsimalloc 173
visitmdsimsetcycletime 173
visitmdsimsetmode 173
visitmdvaralloc 176
visitmdvarsetcentering 176
visitmdvarsetmeshname 176
visitmdvarsetname 176
visitmdvarsettype 176
visitmeshcurvilinear 190
VisItOpenTraceFile 149
VISITPLUGINDIR 167
visitpointmeshalloc 193
visitpointmeshsetcoordsxyz 193
visitprocessenginecommand 162
visitrectmeshalloc 188
visitrectmeshsetcoordsxy 188
VisItSetDirectory 149
VisItSetGetDomainNesting 202
VisItSetGetMesh 183
VisItSetGetVariable 213
VisItSetOption 149
visitsetparallel 161
visitsetparallelrank 161
VisItSetupEnvironment 148
visitworkerprocesscallback 165-6
visitstrcmp 182

visitucdmeshalloc 197
visitucdmeshsetconnectivity 197
visitucdmeshsetcoordsxyz 197
visitvardataalloc 188
visitvardatasetc 214
visitvardatasetd 214
visitvardatasetf 188, 214
visitvardataseti 214
VTK 9, 129
vtkFloatArray 126, 127
vtkRectilinearGrid 115
vtkStructuredGrid 117
vtkUnstructuredGrid 119, 121, 125

X
X-Y plots 12
230

