LLNL-SM-446033

Getting Data Into Vislt

July 2010

Version 2.0.0

Brad Whitlock

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercia product, process, or service by trade name, trade-
mark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Liver-
more Nationa Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.

Table of Contents

I ntroduction
Manual ChapterS.o 2
Manual CoNVENLIONSo e 2
= = 1= 2
PicKiNng astrategyot 3
Definition Of termMS . ..o 4
Creating compatiblefiles
Creating a conversion utility or extendingasimulation........................ 7
Survey of databasereader plug-ins. 9
BOV fileformat 9
X-Y Curvefileformat. 12
Plantext ASCHI files o e 12
NETCDF files. . .ot 13
HDFSfiles. . .o 13
Writing SIHOfileso 13
UsingtheSilolibrary 14
Inspecting SIHofiles. 16
Silofilesand parallel codes 16
Creatinganew Silofile. 16
Deadlingwithtime. 18
OptiON [ISIS . o 19
Writingarectilinearmesh. 20
Writingacurvilinear mesht e 23
Writingapoint mesh. 26
Writinganunstructured mesh. 29
Writingascalar variable. 35
Singleprecisionvs. Doubleprecision. 47
WIHEING BXPIrESSIONS . . v ottt e et 47
Creating amaster fileforparallel 48
Writing VTK fileS. ... e e e 54
Getting started with visit writer. 55
Regular mesheswithdata. i 56
Rectilinear mesheswithdata i 58
Curvilinear mesheswithdata. 60
Point mesheswithdata. e 63
Unstructured mesheswithdata.o 64

Creating amaster filefor parallel (visitfile)............ 66

Creating compatiblefiles|l Advanced topics

Writing Vector data.oo i 69
Adding metadata for performanceboosts i 72
Writingdataextents 72
Writing spatial extents 75
GNOSt ZONES . . . oot e 76
Writing ghost zonestoyour files i 78
Materials . ..o e 83
Creating a databasereader plug-in
Structure of Vislt ... 89
PIUG-INS . 91
Starting your pluG-iN 92
Picking adatabase reader plug-ininterface, 92
Using XMLEdit e e 92
Generating aplug-incodeskeleton. i 96
Buildingyour plug-in 97
Calling your plug-infor thefirsttime. 100
Implementing your plug-in 101
Required plug-inmethods. 101
Debugging your plug-in e 103
Openingyourfile 105
Returning filemetadata. i 106
RetUrning amesh e 113
Returningascalarvariable. 126
Returning avector variable. 127
UsingaVTKreader class. e 129
AdvanCed tOPICSo e 129
Returningcyclesand times.t 129
Auxiliary data. e 134
Returning ghoSt ZONES. oo 139
Parallelizingyourreader.t 141
I nstrumenting a ssimulation code
AT CNItECtUr . . . o 143
USING lIDSIM . o 146
Getting libsSim 146
Buildinginlibsimsupport 146
INitialization 147
Restructuringthemainloop i 152
Using libsiminaFortransimulation 158
Using libsiminaparallel Fortransmulation. 161
Running aninstrumented simulation i 166
Connecting to an instrumented simulationfromVislt 166
Writing data acCessS Coaeo ot ittt e 167
TheVislt Datalnterface. e 168

\Y

How dataaccessfunctionsarecaled, 168

Making dataaccess functionsavailable 170
Dataaccessfunctionformetadata i 172
Dataaccessfunctionfor meshes. ... e 183
ReCtilinEar MEShES oo 185
CUNVIINEAr MESNES . . . e 188
POINt MESNES. . . .ot 192
Unstructured MmeShEs. oot 194
AMR IMESNES. . . .ot 199
CSG MESNES . ot 206
Interleaved COOrdiNaES.ottt e 212
Dataaccessfunctionforvariables i 213
Dataaccessfunctionfor CUrVESt e 216
Dataaccessfunctionformaterialsc i 218
Dataaccess function for thedomainlist. 222

vii

viii

Chapter 1 Introduction

1.0

Overview

Vislt isafree, open source, platform independent, distributed, parallel, visualization tool
for visualizing data defined on two- and three-dimensional structured and unstructured
meshes. Vislt's plug-in architecture allowsit to perform awide variety of plotting and data
processing operations, and also allows Vislt to import data from many different data
formats.

Thismanual explainsin detail how to get your datainto Vislt, concentrating on three main
strategies: writing compatible files, writing a new plug-in for Vislt, or instrumenting a
simulation code. In addition to providing the how-to’s of getting your datainto Vislt, this
manual also presents reasons for why you might choose one strategy over another.

This manual is geared towards someone who wants to visualize and analyze data using
Vislt. Vislt reads alarge number of file formats so users of some existing simulation
software will be able to use Vislt right away. This manual isfor the user who has datafiles
that Vislt does not read, or who wants to directly access data from a homegrown
simulation code. Whichever the case, this manual assumes familiarity with computer
programming since all of the covered approaches for getting data into Vislt require some
programming. The examples in this manual are written primarily using the C and C++
programming languages, though relevant examples for the Fortran and Python languages
are aso included.

Overview Getting Data into Vislt Manual 1

Introduction

2.0 Manual chapters
This manual is broken down into the following chapters:
Chapter title Chapter description
Introduction This chapter.
Creating compatible files | Describeshow to store datainto file
formats that Vislt already reads.
Creating compatible files | Describes how to store metadata to
Il Advanced topics boost Vislt's performance and also
covers more exotic types of data that
can be stored into file formats that
Vislt aready reads.
Creating a database Describes how to create a new data-
reader plug-in base reader plug-in for Vislt so it can
read your own data file format.
Instrumenting simulation | Describes how to instrument your
codes simulation code so Vislt can directly
access its data without the need to
writefiles.
3.0 Manual conventions
This manual uses the following conventions:
Element All GUI elements, like windows, menus, and buttons will
usebold helvetica.
Chapters | All referencesto other chapterswill useBold Times.
Documents | All document or file names will be italicized.
4.0 Strategies
Often, thefirst strategy to consider when trying to get your datainto Vislt is creating data
files using a data format that Vislt can aready read. Thisis usually the simplest method
for getting data into Vislt as it can be accomplished by adding a new 1/0 module to your
simulation code or it can be achieved by creating an external data conversion utility.
Changing your simulation code to write out data that Vislt can read is sometimes not an
option. For example, you might not have the simulation’s source code or perhaps thereis
2 Manual chapters

Introduction

5.0

too much risk involved in changing the source code. In addition, you might have gigabytes
of archived data that you've written using your simulation’s native data format and now
you want to visualize that datain Vislt. If any of these cases apply to your situation then
you might want to consider writing a database reader plug-in for Vislt so Vislt can natively
understand your simulation code’s data format.

If you want to maintain your current data format but you don’t want to write a database
reader plug-in for Vislt, you have another option: instrument the ssmulation code. Vislt
provides a modestly sized library that contains C-Language functions that you can useto
instrument your simulation code. When a simulation code is instrumented, Vislt can
connect to it and access any of the arrays that you expose. This approach lets Vislt
visualize the data from your simulation code directly without the need to writefiles.

Picking a strategy

The strategy you use to get your datainto Vislt depends on your situation. The following
table indicates reasons when you might pick one strategy over another.

Strategy Reasons when to use

Create compatible *You have access to your simulation code’s source
files code and one of Vislt's supported file formats can
express your data.

*You can write aconversion utility and don’t mind
using it to copy the existing datainto a new data
format.

Write a database *You have written alot of datafiles using your
reader plug-in own dataformat or aformat that Vislt does not
read.

*Changing the simulation’s source code is not an
option.

*Vislt's supported file formats can’t fully capture
your data’s structure or content.

*Your dataformat is already supported in another
visualization application.

Instrument simula- *You want to use Vislt to inspect your data asit is
tion code calculated.

*You don’t want to change your simulation code
so it writes adifferent data format.

*Your simulation code iswritten in the C, C++, or
Fortran programming languages.

Picking a strategy

Introduction

6.0

The following table indicates reasons why you would not pick one of the given strategies.

Strategy Reason to not use
Create compatible *You don’'t want to change or are unable to change
files your simulation’s source code

*You don’t want to replicate data in another data
format, taking up more storage.

*Your dataformat is already supported in another
visualization application

Write a database *Developing a Vislt database reader plug-in can be
reader plug-in difficult, though this manual aimsto lessen the
difficulties.

*You need to run Vislt on several platforms and
you don’t want to build the plug-in on all of those
platforms.

*You don’t want to maintain a Vislt plug-in. Note
that you could donate the plug-in to the Vislt

development team.
Instrument simula- *You don’'t want to change or are unable to change
tion code your simulation’s source code.

*Your simulation code is not written in C, C++, or
Fortran.

After examining the above tables, you probably have a pretty good idea of which strategy
will work best for getting your datainto Vislt. The following chapters will provide details
on how best to get your datainto Vislt using each of the recommended strategies.

Definition of terms

This section defines some of the terms that will be used to describe data structures that
Vislt can visualize. These terms are defined here because many branches of science that
might use Vislt to visualize and analyze data have their own terms. It is hoped that adding

Picking a strategy

Introduction

the definition of terms here will reduce ambiguity when different types of data are covered
in later chapters.

Term

Definition

Curvilinear
mesh

A curvilinear mesh is amesh composed entirely of quad-
rilateral or hexahedral cells. Furthermore, the meshis
constructed such that all zones exist in alogically contig-
uous brick having NX zonesin the X dimension, NY
zonesinthe Y dimension, and in the case of 3-D: NZ
zonesin the Z dimension. Each node in the mesh requires
an explicitly provided coordinate value.

Domain

A domain isaunit of work that corresponds to a piece of
the mesh that is handled by a given processor when run-
ning in parallel. Meshes are often split into multiple
pieces, or domains, that can be assigned to different pro-
cessors in order to handle larger simulations.

Ghost zone

A ghost zone is a zone on the boundaries of domains and
it isused to ensure that each domain knows the data value
on the other side of the domain boundary so operations
requiring continuity do not give rise to discontinuities at
domain boundaries.

Material

A physical material such asair or steel that is assigned to
various zones in amesh to indicate the types of materias
that make up the simulated model. Zones that contain
more than one material are said to be “mixed” since their
compositions are determined by a set of volume fractions
of various materialsin the zone.

Mesh

A mesh is a structure composed of zones.

Node

A mathematical point. Nodes are used to describe the
coordinates for zones that make up a mesh.

Node-cen-
tered

Node-centered is aterm that applies to data stored on a
mesh; it means that there is one data value for each node
in the mesh and that values in the zone are created by
interpolating data from the nodes.

Point mesh

A mesh consisting of aset of locations, or points, in
space. These nodes are not connected.

Picking a strategy

Introduction

Term Definition

Rectilinear | A rectilinear mesh is amesh composed entirely of quadri-
mesh lateral or hexahedral cellsthat are all the same shape.
Furthermore, the mesh is constructed such that all zones
exist in acontiguous brick having NX zonesin the X
dimension, NY zonesinthe Y dimension, and in the case
of 3-D: NZ zonesin the Z dimension. The coordinates for
the nodes are supplied aslistsof NX, NY, or NZ elements
from which the full complement of nodes can be created.

Time step Simulations proceed by calculating their state at the cur-
rent time and then making adjustments that are needed to
advance the state of the simulation to the next time. This
isdonein an iterative cycle. One iteration of the simula-
tionis called atime step.

Unstruc- An unstructured mesh consists of a set of nodes and a set
tured mesh | of zones. The set of zones may consist of many different
zone types such as triangles, quadrilaterals, tetrahedra,
hexahedra, prisms, pyramids, or other polyhedra. Adja-
cent zones share the same nodes and the nodes are repre-
sented as a shape type identifier and alist of the nodes
that comprise the zone.

Zone-cen- Zone-centered is aterm that appliesto data stored on a
tered mesh; it means that there is one data value for each zone
in the mesh.

Zone/Cell Zone and Cell are used interchangeably in this document.
A zoneis a shape that unites one or more nodes into a
connected structure where the nodes are the vertices of
the connected structure. Point meshes can have nodes as
zones. 1-D meshes contain zones that are lines that con-
nect nodes. 2-D meshes contain 2-D shapes such as trian-
gles and quadrilaterals that connect nodes together. 3-D
meshes contain volumetric polyhedra such as: tetrahe-
drons, hexahedrons, prisms, pyramids, etc.

6 Picking a strategy

Chapter 2 Creating compatiblefiles

1.0 Overview

This chapter elaborates on how to create filesthat Vislt can read. The two main methods of
creating filesthat Vislt can read are: creating a conversion utility and altering asimulation
code to write out its datain anew file format. This chapter discusses the merits of each
approach so you can decide which is best for your situation. Once you settle on an
approach, you can elect to write out Silo filesfrom C or Fortran, or you can write out VTK
files from any programming language. If you decide to write out VTK files, this chapter
presents examples for doing so in C and Python.

2.0 Creating aconversion utility or extending a simulation

Creating files using adataformat that Vislt can read is often the easiest strategy for getting
your datainto Vislt. You can change your simulation code to natively write its datato a
format that Vislt can read, such as Silo or VTK. Alternatively, you can create a conversion
utility to post-process your data files into aformat that Vislt can read. Both of these
approaches have their pros and cons and, fortunately, the programming done to achieve
either is essentially the same.

Approach Pros Cons

Modify *Dataisin aformat that can | *Depending on the simula-

simulation be immediately visualized tion code’s implementa-

code tion language, there may
not be a binding to a suit-
able 1/O library.

Overview Getting Data into Vislt Manual 7

Creating compatiblefiles

Approach Pros Cons

Create con- | *Simulation code does not *Replicates data on disk

version util- | have to be changed “Extrastep is required to

ity visualize simulation data
*Utility must be maintained

«Utility must read datafrom
file beforeit can be written
to new data format.

The chief differences between the two approaches arise in where the new code is located.
When changing a simulation code, you will most likely add a new I/O module that can
dump out your simulation’s data for the purpose of visualization. When creating a
conversion utility, you are creating a stand-alone program that you have to run on the data
after the simulation has compl eted.

A very simple simulation code's main loop might look like the example below. The
purpose of the simple pseudocode listing is to point out where you might want to add
additional routines that can write your datato files compatible with Vislt. You might want
to provide aswitch that tells your program to write datafiles that Vislt can read in addition
to your regular dataformat. Alternatively, you might opt to just write files that are
compatible with Vislt.

/* SI'MPLE SI MJLATI ON SKELETON */
void wite vis_dunp()
{
if(wite data for_visit)
/* Add your code to wite Vislt data files here. */
el se
wite vis dunp_using regular_format();
}
int main(int argc, char **argc)
{
read_i nput _deck();
do
{
simul ate_one_timestep();
wite vis_ dump();
} while(!sinulation_done());
return O;

}

If you choose to write a conversion utility, a pseudocode skeleton might look something
like this:

/* SI MPLE CONVERSI ON UTI LI TY SKELETON */
void wite to visit_format(const char *, MeshAndData *)

{

/* Add your code to wite a Vislt data file here. */

8 Overview

Creating compatible files

3.0

}

voi d convert _file(const char *fil enane)

{
struct MeshAndDat a dat a;
char newfil enanme[1024] ;
read _data fromregular_format(fil enane, &data);
create_visit_filename(fil enane, newfil enane);
wite to visit_format(newfil enane, &data);
free_dat a(&data) ;

}

int main(int argc, char *argv[])

{

for(int i = 1; i < argc; ++i)
convert _file(argv[i]);
return O;

Survey of database reader plug-ins

Vislt provides database reader plug-ins for over one hundred different file formats. You
can find atable listing the supported formats and links to more information at

http: //mwww.visitusers.org/index.php?title=Detailed_list_of file formats Mislt supports.
This chapter will talk briefly about some simple file formats before covering the Silo and
VTK fileformats. Silo and VTK will be covered much more extensively because they are
two of the most general formats and they are capable of describing awide variety of
different data constructs.

Silo is a C-language library with a well-defined application programming interface (API)
for writing out the types of objects in which most simulations are interested (e.g. meshes,
variables). Silo files can be written to two different underlying file structures: HDF5 and
PDB; both are self-describing, platform independent, binary file formats. If you write a
file on one platform using the Silo library, it can be read by the Silo library on any other
platform. Silo bindings also exist for the Fortran and Python programming languages.
Fore more information, see the Slo User’s Guide.

The VTK fileformat iswritten by various C++ classesin VTK (Visualization Tool Kit)
and is most often stored in ASCI| text files. The VTK file format does, more recently,
support an XML -based file format, which includes support for binary data and
compression. However, this manual will provide example code to write datainto VTK’s
legacy ASCII format. The example code will use Vislt'svi sit_writ er library to
demonstrate creating VTK files without using the VTK library itself so the applications
will be very lightweight.

3.1 BOV fileformat

Asmentioned earlier, Vislt can read over one hundred file formats and this manual will
mainly concentrate on two of them. There are other file formats that might be useful to

Survey of database reader plugins

Creating compatiblefiles

you depending on how you have written your data files. For example, if you have written

your dataasabinary file consisting of 1 variable on aNX*NY*NZ rectilinear mesh then it
ispossible that you can use Vislt's BOV (“Brick of Values’) database reader plug-in and

not have to do any data conversion.

Vislt'sBOV database reader plug-inisused to read dataout of abinary file containing just
the datavalues. If your data file was written using code resembling the following code
fragments then you might be able to use Vislt’'s BOV database reader plug-in.

Listing 2-1: bov.c: C-Language example for creating data that the BOV plug-in can read.

/* Exanple C code */

float data] NZ] [NY] [NX];

FILE *fp = fopen(“bov.val ues”, “wbh”);
fwite((void *)data, sizeof(float), NX*NY*Nz, fp);
fcl ose(fp);

Listing 2-2: fbov.f: Fortran language example for creating data that the BOV plug-in can read.

¢ Exanple Fortran code
real val ues(NX, NY, NZ2)
open (unit=output, file="fbov.values', status='replace’
forme unformatted’)
write(output) val ues
cl ose (output)

Fileswritten in this manner will need an auxiliary data header text file stored along side of
the real datafile to contain information such as the dimensions of the data and its type and
endian representation. If this sounds like what you write from your simulation code then
you should try using the BOV reader. Before trying to open the data using Vislit's BOV
database reader plug-in, you will have to write a BOV-compatible header file to
accompany your data files so Vislt knows how to read the binary datafile.

Notethat it is also possible to create a BOV header file that describes a set of binary brick
of valuefiles. Thisis useful when you have multiple processors each writing their own
data files but you need to view them as awhole within Vislt. When you need this
functionality, you can provide afilename with wildcards for using the DATA_FILE
keyword. For example, you could add “DATA_FILE: file%04d.dat” to the BOV header file
to make Viglt treat all files matching the file%004d.dat pattern as separate domains within
the BOV dataset.

Example BOV header file:

TIME: 1.23456

DATA _FI LE: fil e0000. dat

The data size corresponds to NX,NY,NZ in the above exanpl e code.
DATA_SIZE: 10 10 10

10

Survey of database reader plugins

Creating compatible files

Al | owabl e val ues for DATA FORMAT are: BYTE, SHORT, | NT, FLOAT, DOUBLE
DATA_FORMAT: FLOAT

VARI ABLE: what | call _the_data

Endi an representation of the conmputer that created the data.

Intel is LITTLE, nmany other processors are Bl G

DATA_ENDI AN: LI TTLE

Centering refers to how the data is distributed in a cell. If you
give “zonal” then it’s 1 data value per zone. O herw se the data
will be centered at the nodes.

CENTERI NG zonal

BRICK. ORIG@ N l ets you specify a new coordi nate systemorigin for
the nesh that will be created to suit your data.

BRICK ORIG@N. 0. 0. O.

BRI CK_SI ZE | ets you specify the size of the brick.

BRI CK_SI ZE: 10. 10. 10.

Additional BOV options:

BYTE _OFFSET: is optional and lets you specify sone nunber of

bytes to skip at the front of the file. This can be useful for
ski pping the 4-byte header that Fortran tends to wite to files.
If your file does not have a header then DO NOT USE BYTE OFFSET.
BYTE_COFFSET: 4

DIVIDE BRICK: is optional and can be set to “true” or “false”.

When DIVIDE BRICK is true, the BOV reader uses the val ues stored
in DATA BRI CKLETS to divide the data into chunks that can be

processed in parallel.

DI VI DE_BRI CK: true

DATA BRI CKLETS: is optional and requires you to specify 3 integers
that indicate the size of the bricklets to create when you have

al so specified the D VIDE BRI CK option. The val ues chosen for

DATA BRI CKLETS nust be factors of the nunbers used for DATA SIZE.
DATA BRI CKLETS: 5 5 5

DATA COVPONENTS: is optional and tells the BOV reader how many
conponents your data has. 1=scal ar, 2=conpl ex nunber, 3=vector,

4 and beyond indicate an array variable. You can use “COVPLEX'

i nstead of “2” for conplex nunbers. Wen your data consists of
nul ti pl e conponents, all conponents for a cell or node are witten
sequentially to the file before going to the next cell or node.
DATA COVPONENTS: 1

HHHHHH

Take the above example BOV header file template and save it to a new text file with a
“.bov” file extension. Next, edit the file and change some of the values to make it relevant
to the datafile that you want to open. Once you’ve completed editing the “.bov” file, open
itin Viglt. If you see that the Plots menu is enabled and the Mesh and Pseudocolor
plot menus are enabled then you are halfway to success. If you can create a Pseudocol or
plot, click the Draw button, and have Vislt process your data until thereisapicturein the
visualization window then this approach works for you and you can repeat it for your other
datafiles. If the pictureis not quite what you expected then you can fine-tune the valuesin

Survey of database reader plugins 11

Creating compatiblefiles

the “.bov” file until you get the picture that you want to see. The most common cause of
errorsisfailing to set the DATA_SIZE and DATA_FORMAT keywords to the right values
for your datafile.

For large datafiles, you will want to add DATA_BRICKLETS and DIVIDE_BRICK
keywords to your BOV file. When these keywords are present, they instruct the BOV
reader to dynamically read smaller pieces of the BOV data file into different domains that
Vislt can processin paralel (when you use aparallel installation of Vislt). When used
with DIVIDE_BRICK, DATA_BRICKLETS allows you to specify the size of a bricklet.
The values used for the bricklet size divide evenly into the total data size that you provided
with the DATA_SIZE keyword.

3.2 X-Y Curvefileformat

Vislt is used to examine and analyze awide variety of datain 2D and 3D on many
different types of meshes. In addition to those capabilities, Vislt can also visualize and
process 1D curves, sometimes known as X-Y plots. Vislt's Lineout mode can extract data
from a higher dimensional dataset and draw the resulting data as an X-Y plot, or a Curve
plot asit isknown in Vislt terms. Vislt can also import X-Y dataand useit to create Curve
plots. The Curve file format, which is barely more than alist of X-Y pairs, is outlined
below:

#cur vlinane
x0 yO
x1 yl
X2 y2

#cur ve2nane
Xn yn
xnl ynl

Asshown in the example Curvefile, the Curve file format can contain datafor more than 1
set of X-Y pairs. The name of each pair isindicated ina‘# comment line. The X-Y pairs
follow until the end of the file or until anew curveis declared using another ‘# comment
line. If you write data to the Curve file format then the file extension should be “ .curve” to
ensure that Vislt recognizesit asa Curvefile.

3.3 Plain text ASCI|I files

Many software programs, including Vislt, can read tables of numeric text. Thesefiles are
called plain text ASCII files and they contain columns of numbers separated by
whitespace or commas. When Vislt reads plain text ASCII files, you can specify some
read options that determine how Vislt presents the data for plotting. Thisis necessary
because of the myriad of ways that data can be stored in tabular form. For example, Vislt
provides options to treat the table as data values on a 2D mesh, or as columns of 1D
particle data.

12

Survey of database reader plugins

Creating compatible files

34 NETCDF files

NETCDF isalibrary that allows codes to write self-describing array datato a binary file.
Thisformat is very popular in the climate research community and Vislt provides a
NETCDF reader. Since NETCDF files are for array data only, they lack a mechanism to
represent higher level constructs such as meshesin the file. As aresult, many simulation
codes write out their mesh data as a set of arrays whose relationship is understood by the
simulation code. The relationship between arrays is known as a convention. Conventions
present a problem for other software that is not aware of the conventions used to store the
data. Visit's NETCDF reader is aware of afew conventions for specific simulation codes
and it attempts to implement a subset of the CF convention for climate data. Any other
NETCDF filesthat Vislt's reader cannot associate with a particular convention are treated
generically by Vislt's “basic” NETCDF reader. The basic NETCDF reader serves up data
asindependent 1D, 2D, 3D (possibly time-varying) arrays. If you write your data using the
NETCDEF library, Vislt will usually be able to present it in a suitable fashion.

3.5 HDF5files

HDF5 format is abinary format that allows codes to write hierarchical, self-describing
array datato afile. More information on HDF5 is available at

http: //www.hdfgroup.org/HDF5. As with NETCDF, HDF5 is mainly aformat for storing
arrays though it does permit storing structures and more complex data types. Simulation
codes mainly use HDF5 to store the independent arrays that make up their data model.
This means that while the data arrays are described by thefile, the relationships between
them are not. Libraries such as Silo are built on top of HDF5 to provide these semantics.

Vislt takes a dightly different approach with HDFS5 than it does for NETCDF in that each
“flavor”, or HDF5 convention, is read by a separate HDF5 reader plugin. The NETCDF
reader incorporates all of the NETCDF readersinto a single plugin. Many of the HDF5
reader plugins are for specific ssmulation codes and some are more general, attempting to
provide ageneric view of the HDF5 data. Finally, some HDF5 readers such as VisSchema
and XDMF use an auxiliary XML file to describe how various arraysin the HDF5S file are
assembled into higher level constructs such as meshes. If you use HDF5 to store your data,
chances are that you will be able to create an XML file that tells the VisSchemaor XDMF
reader how to read your file in the manner that you intended when you stored the data. For
more information on creating an XML file for the XDMF reader, see

http: //mww.xdmf.org/index.php/XDMF_Model_and_Format.

4.0 Writing Silofiles

If you are writing a conversion utility or if you have a simulation code written in C, C++,
or Fortran then writing out Silo filesis a good choice for getting your datainto Vislt. This
section will illustrate how to use the Silo library to write out various types of scientific
data. Since the Silo library provides bindings for multiple languages, including C, Fortran,

Writing Silofiles 13

Creating compatiblefiles

and Python, the source code examples that demonstrate a particular topic will be given in
more than 1 programming language, when appropriate. One goal of this section isto
provide examples that are complete enough so that they can be readily adapted into
working source code. In fact, most of the examplesin this chapter are available as working
programs in the accompanying “ Getting your datainto Vislt” code distribution. This
section will not necessarily explain all of the various arguments to function callsin the
Silo library. You can refer to the Slo User’s Guide for more information.

41 UsingtheSilolibrary

Vislt is aways built with support for reading Silo databases so Silo can be agood file
format in which to store your data. This subsection includes information about using Silo
such as including the appropriate header files and linking with the Silo library.

411 Including Silo

When using any library in a program, you must tell the compiler about the symbols
provided by the library. Here is what you need to include in your source code in order to
use Silo:

C-Language:

#i ncl ude <sil o. h>

Fortran language:

i nclude “silo.inc”

412 Linkingwith Silo

Before you can build a program that uses Silo, you must locate the Silo include files and
the Silo library. Silo is not distributed as part of the Vislt source code or binary
installations so you must obtain it separately unless you are developing on the Windows
platform. A link to the most up-to-date version of the Silo library’s source code can be
found on the Vislt Web site at http://www.lInl.gov/visit/source.html.

Once you download the Silo source code, building and installing it isusually only a matter
of running its configure script and running make. You can even use the build_visit script
from the Vislt Web site to build Silo with support for HDF5. An example command line to
build Silo with support for HDF5 is:

./build visit --console --no-visit --no-thirdparty \
--thirdparty-path /usr/local \
--silo --hdf5 --szip

After you've configured, built, and installed the Silo library, your program will have to be
built against the Silo library. Building against the Silo library isusually accomplished by a
simple adaptation of your Makefile and the inclusion of silo.h in your C-language source

14

Writing Slo files

Creating compatible files

code. If you used build visit to install Silo and its dependant librariesin /usr/local then
you would add the following to your Makefile, adjusting the values for the install location,
versions, and PLATFORM accordingly:

PLATFORMEI 386- appl e-darwi n10_gcc-4. 2

SZI P_DI R=/ usr/ | ocal / szi p/ 2. 1/ $(PLATFORM
SZ| P_CPPFLAGS=-1$(Szl P_DI R) /i ncl ude

SZ| P_LDFLAGS=-L$(SZIP_DR/lib
SZIP_LIBS=-1sz

HDF5_DI R=/ usr/ 1 ocal / hdf 5/ 1. 8. 4/ $(PLATFORM
HDF5_CPPFLAGS=- | $(HDF5_DI R) /i ncl ude $(Szl P_CPPFLAGS)
HDF5_LDFLAGS=- L$(HDF5_DIR)/1i b $(Szl P_LDFLAGS)
HDF5_LI BS=-1 hdf5 $(SzIP_LIBS) -1z

SI LO DI R=/usr/local /silol4.6.2/ $(PLATFORM

S| LO CPPFLAGS=-1$(SILO DI R)/include $(HDF5_CPPFLAGS)
SI LO LDFLAGS=-L$(SILO D R)/1ib $(HDF5_LDFLAGS)

SI LO LI BS=-1siloh5 $(HDF5_LIBS) -Im

LDFLAGS=$(LDFLAGS) $(SI LO_LDFLAGS)
LI BS=$(SI LO LI BS)
CPPFLAGS=$(CPPFLAGS) $(SI LO_CPPFLAGS)

If your Makefile does not use CPPFLAGS then you might try adding the -1 include
directivesto CFLAGS, F77FLAGS, or whichever make variables are relevant for your
Makefile.

4.1.3 Using Siloon Windows

When you build an application using the Silo library on Windows, you can use the
precompiled Silo DLL and import library that comes with the Vislt source code
distribution for Windows. The Vislt 2.0.0 source code distribution for Windows is called
visitdev2.0.0.exe. Other versions of Vislt would, of course, include a different version
number in the filename. When you install the Vislt source code distribution for Windows,
you get al of Vislt's project files, include files, and source code. In addition, certain
precompiled libraries such as Silo are included.

If you want to build an application against the Silo library provided with Vislt, add the
path to silo.h to your project file. If you build using a source code distribution for Vislt
2.0.0 that was installed in the default location, the path would be:
C:\VisltDev2.0.0\includé\silo.

After setting the Silo include directory to your project file, make sure that the Silo’simport
library isin your linker path. You can add C:\\isltDev2.0.0\lib\Release our
C:\MisltDev2.0.0\lib\Debug to your project to ensure that your linker can find Silo’simport
library. Next, add silohdf5.lib to the list of libraries that are linked with your program.
That should be enough to get your program to build.

Writing Slo files 15

Creating compatiblefiles

Before running your program, be sure to copy silohdf5.dll, hdf5dll.dll, sziplib.dll, and
Zib.dll from C:\VisltDev2.0.0\bin\Release or C:\\MisltDev2.0.0\bin\Debug (depending on
whether your program is compiled with debugging information) into the directory where
your program will execute. Note that you must configure your program to use a
Multithreaded DLL version of the Microsoft runtime library or using the precompiled Silo
library may result in fatal errors.

4.2 Ingpecting Silofiles

Silo includes acommand line utility called browser that can access the contents of Silo
files. To run browser, type “ browser” into atermina window followed by the name of a
Silo file that you want to inspect. Once the browser application opens the Silo file, type
“1s’ to see the contents of the Silo file. From there, typing the name of any of the objects
shown in the object listing will print information about that object to the console.

4.3 Silofilesand parallel codes

Before we delve into examples about how to use the Silo library, let’s first examine how
parallel simulation codes process their data in a distributed-memory environment. Many
parallel simulation codes will divide the entire simulated mesh into submeshes, called
domains, which are assigned to processors that calculate the fields of interest on their
domain. Often, the most efficient 1/O strategy for the simulation code is to make each
processor write its domain to a separate file. The examples that follow assume parallel
simulations will write 1 file per processor. It is possible for multiple processors to append
their datato asingle Silo file but it requires synchronization and that technique is beyond
the scope of the examples that will be presented.

44 Creatinganew Silofile

Thefirst step to saving datato aSilo fileisto create the file and obtain a handle that will be
used to reference the file. The handle will be passed to other Silo function callsin order to
add new objectsto the file. Silo creates new files using the DBCr eat e function, which
takes the name of the new file, access modes, a descriptive comment, and the underlying
file type as arguments.

In addition to being alibrary, Silo is a self-describing data model, which can be
implemented on top of many different underlying file formats. Silo includes drivers that
allow it to read data from several different file formats, the most important of which are:
PDB (A legacy LLNL file format) format, and HDF5 format. Silo files stored in HDF5
format often provide performance advantages so the following code to open a Silo file will
create HDF5-based Silofiles. You tell Silo to create HDF5-based Silo files by passing the

16

Writing Slo files

Creating compatible files

DB_HDF5 argument to the DBCr eat e function. If your Silo library does not have built-in
HDF5 support then you can pass DB _PDB instead to create PDB-based Silo files.

Listing 2-3: basic.c: C-Language example for creating a new Silo file. !

#i ncl ude <sil o. h>
#i ncl ude <stdi o. h>
i nt
mai n(int argc, char *argv[])
{
DBfile *dbfile = NULL
/* Open the Silo file */
dbfile = DBCreate(“basic.silo”, DB CLOBBER, DB LOCAL,
“Comment about the data”, DB HDF5);
i f(dbfile == NULL)
{
fprintf(stderr, “Could not create Silo file!l\n”);
return -1;
}
/* Add other Silo calls here. */
/* Close the Silo file. */
DBCl ose(dbfile);
return O;

Listing 2-4: fbasic.f: Fortran language example for creating a new Silo file.. !

progam mai n
inmplicit none
i nclude “silo.inc”
integer dbfile, ierr
¢ The 11 and 22 argunents represent the | engths of strings
ierr = dbcreate(“fbasic.silo”, 11, DB CLOBBER, DB LOCAL,
. “Conment about the data”, 22, DB _HDF5, dbfile)
if(dbfile.eq.-1) then
wite (6,*) ‘Could not create Silo filel\n’
goto 10000
endi f
¢ Add other Silo calls here.
c Close the Silo file.
ierr = dbcl ose(dbfile)
10000 stop
end

In addition to using the DBCr eat e function, the previous examples also use the

DBCl ose function. The DBCl ose function ensures that all datais written to the file and
then closes the Silo file. You must call the DBCl ose function when you want to close a
Silo file or your file may not be complete.

Writing Slo files 17

Creating compatiblefiles

45 Dealing with time

Silofiles are aflexible container for storing many types of data. Silo’s ability to store data
hierarchically in directories can allow you to store multiple time states of your ssmulation
data within asingle data file. However, since Silo is primarily an /O library for storing
filesthat contain asingletime step’sworth of data, Vislt only recognizes onetime state per
Silo file. Consequently, when writing out data, programs that use Silo will writeanew Silo
file for each time step. By convention, the new file will contain an index indicating either
the simulation cycle or asimple integer counter.

Listing 2-5: time.c: C-Language example for dealing with time.

/* SI MPLE SI MULATI ON SKELETON */
void wite vis_dunmp(int cycle)
{
DBfile *dbfile = NULL;
/* Create a unique filenane for the new Silo file*/
char fil enane[100];
sprintf(filenane, “outputy®4d.silo”, cycle);
/* Open the Silo file */
dbfile = DBCreate(fil ename, DB_CLOBBER, DB_LOCAL,
“simulation time step”, DB HDF5);
/* Add other Silo calls to wite data here. */
/* Close the Silo file. */
DBCl ose(dbfile);

int main(int, char **)

int cycle = 0;

read_i nput _deck();

do

{
simul ate_one_tinmestep();
wite vis_dunmp(cycle);
cycle = cycle + 1;

} while(!sinulation_done());

return O;

The above code listing will write out Silo files with names such as: output0000.silo,
output0001.silo, output0002.silo, ... Each file contains the data from a particular
simulation time state. It may seem like the data are less related because they are stored in
different files but the fact that the files are related in time is subtly encoded in the name of
each of the files. When Vislt recognizes a pattern in the names of the files such as
“output????.sil0”, in this case, Vislt automatically groups the filesinto atime-varying
database. If you choose names for your Silo files that cannot be grouped by recognizing a
numeric pattern in the trailing part of the file name then you must use a .visit file to tell

18

Writing Slo files

Creating compatible files

Vislt that your files are related in time. For more information about .visit files, consult the
Vislt User’s Manual.

4.6 Option lists

Many of Silo’s more complex functions accept an auxiliary argument called an option list.
Anoption list isalist of option/value pairs and it is used to specify additional metadata
about the data being stored. Each Silo function that accepts an option list has its options
enumerated in the Slo User’s Manual. This manual will cover only a subset of available
options. Option lists need not be passed to the Silo functions that do support them. In fact,
most of the source code examplesin this manual will pass NULL instead of passing a
pointer to an option list. Omitting the option list from the Silo function call in thisway is
not harmful; it only means that certain pieces of additional metadata will not be stored
with the data.

Option lists are created using the DBMakeOpt | i st function. Once an option list object
is created, you can add options to it using the DBAddOpt i on function. Option lists are
freed using the DBFr eeQpt | i st function.

46.1 Cycleandtime

WEe've established that a notion of time can be encoded into filenames using ranges of
numbers in each filename. Vislt can use the numbers in the names of related files to guess
cycle number, ametric for how many times asimulation hasiterated. It is possible to use
Silo’s option list feature to directly encode the cycle number and the ssmulation time into
the stored data.

Listing 2-6: optlist.c: C-Language example for saving cycle and time using an option list..

/* Create an option list to save cycle and tinme val ues. */

int cycle = 100;

doubl e dtinme = 1.23456789;

DBoptlist *optlist = DBMakeOptlist(2);

DBAddOpt i on(opt!list, DBOPT_DTINME, &tine);

DBAddOpt i on(opt!list, DBOPT_CYCLE, &cycle);

/* Wite a nmesh using the option list. */

DBPut Quadnesh(dbfile, "quadnmesh", coordnanmes, coords, dinms, ndins,
DB _FLOAT, DB COLLI NEAR, optlist);

/* Free the option list. */

DBFreeOptlist(optlist);

Listing 2-7: foptlist.f: Fortran language example for saving cycle and time using an option list..

c Create an option list to save cycle and tinme val ues.
i nteger cycle /100/
doubl e precision dtine /1.23456789/
integer err, ierr, optlistid
err = dbnkoptlist(2, optlistid)

Writing Silofiles 19

Creating compatiblefiles

err dbaddi opt (optlistid, DBOPT_CYCLE, cycle)
err dbadddopt (optlistid, DBOPT_DTIME, dtine)

c Wite a nmesh using the option list.
err = dbputgm (dbfile, "quadnesh", 8, "xc", 2,
"yc", 2, "zc", 2, x, y, DB_F77NULL, dins, ndins,
DB_FLOAT, DB _CCOLLI NEAR, optlistid, ierr)

c Free the option list.
err = dbfreeoptlist(optlistid)

4.7 Writing arectilinear mesh

A rectilinear mesh isa 2D or 3D mesh where all coordinates are aligned with the axes.
Each axis of the rectilinear mesh can have different, non-uniform spacing, allowing for
details to be concentrated in certain regions of the mesh. Rectlinear meshes are specified
by lists of coordinate values for each axis. Since the mesh is aligned to the axes, it isonly
necessary to specify one set of X and'Y values to generate all of the coordinates for the
entire mesh. Figure 2-8 contains an example of a 2D rectilinear mesh. The Silo function
call to write arectlinear mesh is called DBPut Quadnesh.

- <54 552
- <54 252
— < 2
e e &g
I

X-coordi nat es

Figure 2-8: Rectilinear mesh and its X,Y node coordinates.

20 Writing Slo files

Creating compatible files

Listing 2-9: rect2d.c: C-Language example for writing a 2D rectilinear mesh.

/* Wite a rectilinear mesh. */

float x[] {0., 1., 2.5, 5.};

float y[] {0., 2., 2.25, 2.55, b5.};

int dims[] = {4, 5};

int ndins = 2;

float *coords[] = {x, vy};

DBPut Quadnmesh(dbfile, “quadnesh”, NULL, coords, dins, ndins,
DB _FLOAT, DB _COLLI NEAR, NULL);

Listing 2-10: frect2d.f: Fortran language example for writing a 2D rectilinear mesh.

c Wite a rectilinear nesh
integer err, ierr, dinms(2), ndins, NX NY
paranmeter (NX = 4)
paranmeter (NY = 5)
real x(NX), y(NY)
data di ms/ NX, NY/
data x/0., 1., 2.5, 5./
data y/0., 2., 2.25, 2.55, 5./
ndins = 2
err = dbputgm (dbfile, "quadnesh", 8, "xc", 2,
"yc", 2, "zc", 2, X, y, DB _F77NULL, dins, ndins,
DB _FLOAT, DB COLLI NEAR, DB_F77NULL, ierr)

The previous code examples demonstrate how to write out a 2D rectilinear mesh using
Silo’'sDBPut Quadnesh function (called dbput gmin Fortran). There are three pieces of
important information passed to the DBPut Quadnesh function. The first important
piece information is the name of the mesh being created. The name that you choose will
be the name that you use when writing a variable to a Silo file and a so the name that you
will seein Vislt's plot menus when you want to create a Mesh plot in Vislt. After the
name, you provide the coordinate arrays that contain the X and Y point values that
ultimately form the set of X,Y coordinate pairs that describe the mesh. The C-interface to
Silo requires that you pass pointers to the coordinate arrays in a single pointer array. The
Fortran interface to Silo requires you to pass the names of the coordinate arrays, followed
by the actual coordinate arrays, with avalue of DB_F77NULL for any arrays that you do
not use. Thefinal critical pieces of information that must be passed to the

DBPut Quadnesh function are the dimensions of the mesh, which correspond to the
number of nodes, or coordinate values, along the mesh in a given dimension. The
dimensions are passed in an array, along with the number of dimensions, which must be 2

Writing Silofiles 21

Creating compatiblefiles

or 3. Figure 2-11 shows an example of a 3D rectilinear mesh for the upcoming code

examples.

Y-coordinates

£

Figure 2-11: Rectilinear mesh and its X,Y,Z coordinates

X -coordinates

Listing 2-12: rect3d.c: C-Language example for writing a 3D rectilinear mesh.

/* Wite a rectilinear nmesh. */

float x[] = {0., 1., 2.5, 5.};
float y[] = {0., 2., 2.25, 2.55, 5.};
float z[] = {0., 1., 3.};

int dims[] = {4, 5, 3};
int ndins = 3;
float *coords[] = {x, vy, z};

DBPut Quadnmesh(dbfile, "quadnesh", NULL, coords, dins, ndins,

DB_FLOAT, DB_COLLI NEAR NULL);

Listing 2-13: frect3d.f: Fortran language example for writing a 3D rectilinear mesh.

integer err, ierr, dinms(3), ndins, NX, NY, NZ

paraneter (NX = 4)
paraneter (NY = 5)
paraneter (NZ = 3)

real x(NX), y(NY), z(N2)
data x/0., 1., 2.5, 5./

22

Writing Slo files

Creating compatible files

data y/0., 2., 2.25, 2.55, 5./

data z/0., 1., 3./

ndinms = 3

dat a di ms/ NX, NY, Nz/

err = dbputgm (dbfile, "quadnesh", 8, "xc", 2,
"yc", 2, "zc", 2, X, Yy, z, dinms, ndins,
DB_FLOAT, DB COLLI NEAR, DB_F77NULL, ierr)

4.8 Writing a curvilinear mesh

A curvilinear mesh is similar to arectlinear mesh. The main difference between the two
mesh types is how coordinates are specified. Recall that in arectilinear mesh, the
coordinates are specified individually for each axis and only a small subset of the nodesin
the mesh are provided. The coordinate arrays are used to assemble a point for each nodein
the mesh. In acurvilinear mesh, you must provide an X,Y,Z value for every node in the
mesh. Providing the coordinates for every point explicitly allows you to specify more
complex geometries than are possible using rectilinear meshes. Note how the mesh
coordinates on the mesh in Figure 2-14 allow it to assume shapes that are not aligned to
the coordinate axes.

]

<) e e

Figure 2-14: Curvilinear mesh and its X,Y node coordinates

The fine line between a rectilinear mesh and a curvilinear mesh comes down to how the
coordinates are specified. Silo dicates that the coordinates be specified with an array of X-

Writing Silofiles 23

Creating compatiblefiles

coordinates, an array of Y-coordinates, and an optional array of Z-coordinates. The
difference, of course, isthat in acurvilinear mesh, there are explicit values for each node's
X,Y,Z points. Silo uses the same DBPut Quadnesh function to write out curvilinear
meshes. The coordinate arrays are passed the same as for the rectilinear mesh, though the
X,Y,Z arrays now point to larger arrays. You can pass the DB NONCCL LI NEAR flag to
the DBPut Quadnesh function in order to indicate that the coordinate arrays contain
values for every node in the mesh.

Listing 2-15: curv2d.c: C-Language example for writing a 2D curvilinear mesh.

/* Wite a curvilinear nmesh. */

#define NX 4

#define NY 3

float x[NYJ[NX] = {{0., 1., 3., 3.5}, {0., 1., 2.5, 3.5},
{0.7, 1.3, 2.3, 3.5}};

float y[NYJ[NX] = {{0., 0., 0., 0.}, {1.5, 1.5, 1.25, 1.5},
{3., 2.75, 2.75, 3.}};

int dims[] = {NX, NY};

int ndins = 2;

float *coords[] = {(float*)x, (float*)y};

DBPut Quadnmesh(dbfile, "quadnesh", NULL, coords, dins, ndins,
DB _FLOAT, DB _NONCOLLI NEAR, NULL);

Listing 2-16: fcurv2d.f: Fortran language example for writing a 2D curvilinear mesh.

c Wite a curvilinear nesh
integer err, ierr, dinms(2), ndins, NX NY
paranmeter (NX = 4)
paranmeter (NY = 3)
real x(NX, NY), y(NX NY)
data x/0., 1., 3., 3.5,
0., 1., 2.5, 3.5,
. 0.7, 1.3, 2.3, 3.5/
data y/0., 0., 0., O.,
1.5, 1.5, 1.25, 1.5,
3., 2.75, 2.75, 3./
ndins = 2
data di ms/ NX, NY/
err = dbputgm (dbfile, "quadnesh", 8, "xc", 2,
"yc", 2, "zc", 2, X, y, DB _F77NULL, dins, ndins,
DB _FLOAT, DB _NONCOLLI NEAR, DB _F77NULL, ierr)

Figure 2-17 shows asimple 3D curvilinear mesh that is 1 cell thick in the Z-dimension.
The number of cellsinadimensionis 1 less than the number of nodesin the same
dimension. Asyou increase the number of nodesin the Z-dimension, you must also add

24 Writing Slo files

Creating compatible files

more X and Y coordinate values because the X,Y,Z values for node coordinates must be
fully specified for a curvilinear mesh.

Figure 2-17: 3D Curvilinear mesh and its X,Y,Z coordinates

Listing 2-18: curv3d.c: C-Language example for writing a 3D curvilinear mesh.

/* Wite a curvilinear nesh. */
#define NX 4
#define Ny 3
#define NZ 2

float x[NZ] [NY][NX] = {
{{0.,1.,2.,3.},{0.,1.,2.,3.}, {0.,1.,2.,3.}},
{{0.,1.,2.,3.},{0.,1.,2.,3.}, {0.,1.,2.,3.}}

}s

float y[NZ][NY][NX] = {
{{0.5,0.,0.,0.5},{1.,1.,1.,1.}, {1.5,2.,2.,1.5}},
{{0.5,0.,0.,0.5},{1.,1.,1.,1.}, {1.5,2.,2.,1.5}}

}s

float z[NZ][NY][NX] = {
{{0.,0.,0.,0.},{0.,0.,0.,0.},{0.,0.,0.,0.}},
{{1.,1.,1.,2.},{2.,1.,1.,2.},{2.,1.,1., 1. }}

}s

int dinms[] = {NX, NY, NZ};

int ndins = 3;

float *coords[] = {(float*)x, (float*)y, (float*)z};

DBPut Quadrmesh(dbfile, "quadnesh", NULL, coords, dins, ndins,

Writing Slo files 25

Creating compatiblefiles

DB_FLOAT, DB_NONCOLLI NEAR, NULL);

Listing 2-19: fcurv3d.f: Fortran language example for writing a 3D curvilinear mesh.

c Wite a curvilinear nesh
integer err, ierr, dins(3), ndins, NX, NY, Nz

paraneter (NX = 4)

paranmeter (NY = 3)

paraneter (NZ = 2)

real x(NX, NY,N2Z), y(NX NY,NzZ), z(NX NY, N2)
data x/0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3.,

. 0,1.,2.,8, 0.,1.,2.,3., 0.,1.,2.,3./

data y/0.5,0.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5

. 0.5,0.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5/
data z/0.,0.,0.,0., 0.,0.,0.,0., 0.,0.,0.,0,
1,1.,2.,1., 1.,1.,2.,2., 1.,1.,1.,1./
ndins = 3

data di ns/ NX, NY, Nz/

err = dbputgm (dbfile, "quadnesh", 8, "xc", 2,
"yc", 2, "zc", 2, X, Yy, z, dinms, ndins,

DB _FLOAT, DB NONCOLLI NEAR, DB F77NULL, ierr)

4.9 Writing a point mesh

A point mesh isaset of 2D or 3D points where the nodes also constitute the cellsin the
mesh. Silo provides the DBPut Poi nt nesh function so you can write out particle

systems represented as point meshes.

Figure 2-20: 2D point mesh

26

Writing Slo files

Creating compatible files

Listing 2-21: point2d.c: C-Language example for writing a 2D point mesh.

/* Create sone points to save. */
#define NPTS 100

int i, ndims = 2;

float X[NPTS], y[NPTS];

float *coords[] = {(float*)x, (float*)y};
for(i = 0; i < NPTS; ++i)

{
float t = ((float)i) / ((float)(NPTS-1));
float angle = 3.14159 * 10. * t;
x[i] =t * cos(angle);
y[i] =t * sin(angle);
}

/* Wite a point nesh. */
DBPut Poi nt nesh(dbfil e, "pointnmesh", ndins, coords, NPTS,
DB _FLOAT, NULL);
L |
I I

Listing 2-22: fpoint2d.f: Fortran language example for writing a 2D point mesh.

c Create sone points to save
integer err, ierr, i, ndins, NPTS
par anmeter (NPTS = 100)
real xX(NPTS), y(NPTS), t, angle
do 10000 i = O, NPTS-1
t = float(i) / float(NPTS-1)
angle = 3.14159 * 10. * t

x(i+1l) =1t * cos(angle);

y(i+1) =t * sin(angle);
10000 conti nue
ndins = 2

c Wite a point nesh.
err = dbputpm (dbfile, "pointmesh", 9, ndinms, X, v,
DB _F77NULL, NPTS, DB _FLOAT, DB _F77NULL, ierr)

Writing Silofiles 27

Creating compatiblefiles

Figure 2-23: 3D point mesh

Writing a3D point mesh isvery similar to writing a 2D point mesh with the exception that
for a3D point mesh, you must specify a Z-coordinate. Figure 2-23 shows what happens
when we extend our 2D point mesh exampleinto 3D.

Listing 2-24: point3d.c: C-Language example for writing a 3D point mesh.

/* Create some points to save. */

#define NPTS 100

int i, ndims = 3

float X[NPTS], y[NPTS], z[NPTS];

float *coords[] = {(float*)x, (float*)y, (float*)z};
for(i = 0; i < NPTS; ++i)

{
float t = ((float)i) / ((float)(NPTS-1));
float angle = 3.14159 * 10. * t;
x[1] =t * cos(angle);
y[i] =t * sin(angle);
z[i] =t;
}

/* Wite a point mesh. */
DBPut Poi nt nesh(dbfil e, "pointnmesh”, ndins, coords, NPTS,
DB_FLQOAT, NULL);

Listing 2-25: fpoint3d.f: Fortran language example for writing a 3D point mesh.

28

Writing Slo files

Creating compatible files

c Create sone points to save
integer err, ierr, i, ndins, NPTS
paranmeter (NPTS = 100)
real x(NPTS), y(NPTS), z(NPTS), t, angle
do 10000 i = 0, NPTS-1
t =float(i) / float(NPTS-1)
angle = 3.14159 * 10. * t

x(i+l) =t * cos(angle);
y(i+l) =t * sin(angle);
z(i+1) =t
10000 conti nue
ndinms = 3

c Wite a point nesh
err = dbputpm (dbfile, "pointnmesh", 9, ndinms, x, y, z,
NPTS, DB_FLOAT, DB _F77NULL, ierr)

4.10 Writing an unstructured mesh

Unstructured meshes are collections of different types of zones and are useful because
they can represent more complex mesh geometries than structured meshes can. This
section explains the Silo functions that are used to write out an unstructured mesh.

B 8

8

Figure 2-26: 2D unstructured mesh composed of triangles and
guadrilaterals. The node numbers are labelled red and
the zone numbers are labelled blue.

Silo supports the creation of 2D unstructured meshes composed of triangles,
quadrilaterals, and polygonal cells. However, Vislt splits polygonal cellsinto triangles.
Unstructured meshes are specified in terms of a set of nodes and then azone list consisting

Writing Silofiles 29

Creating compatiblefiles

of lists of nodes, called connectivity information, that make up the zones in the mesh.
When creating connectivity information, be sure that the nodesin your zones are specified
so that when you iterate over the nodes in the zone that a counter-clockwise pattern is
observed. Silo provides the DBPut Zonel i st function to store out the connectivity
information. The coordinates for the unstructured mesh itself is written out using the

DBPut Ucdnesh function.

Listing 2-27: ucd2d.c: C-Language example for writing a 2D unstructured mesh.

/* Node coordinates */

float x[] = {0., 2., 5., 3., 5., 0., 2., 4.,
float y[] = {0., 0., 0., 3., 3., 5., 5., 5.
float *coords[] = {x, V};

/* Connectivity */

int nodelist[] = {

2,4,7, /* tri zone 1 */

4,8,7, /* tri zone 2 */

1,2,7,6, /* quad zone 3 */

2,3,5,4, /* quad zone 4 */

4,5,9,8 /* quad zone 5 */

b

int I nodelist = sizeof(nodelist) / sizeof(int);

/* shape type 1 has 3 nodes (tri), shape type 2 is quad */

i nt shapesize[] = {3, 4};

/* W& have 2 tris and 3 quads */

i nt shapecounts[] = {2, 3};

i nt nshapetypes = 2;

int nnodes = 9;

i nt nzones 5;

int ndins = 2

/* Wite out connectivity information. */

DBPut Zonel i st (dbfile, "zonelist", nzones, ndins, nodelist
1, shapesize, shapecounts, nshapetypes);

/* Wite an unstructured nesh. */

DBPut Ucdnesh(dbfile, "mesh", ndinms, NULL, coords, nnodes,
"zonelist", NULL, DB_FLOAT, NULL);

| nodel i st,

nzones,

Listing 2-28: fucd2d.f: Fortran language example for writing a 2D unstructured mesh.

i nteger err, ierr, ndinms, nshapetypes, nnodes, nzones

¢ Node coordi nates
real x(9) /0., 2., 5., 3., 5., 0., 2., 4.
real y(9) /0., 0., 0., 3., 3., 5., 5., 5
¢ Connectivity
i nteger LNODELI ST
par anet er (LNODELI ST = 18)
i nt eger nodel i st (LNCDELIST) /2,4,7,
4,8,7,

, 5.1
5.1

AN
g wnN
© 01
0~ O

5,9, 8

30

Writing Slo files

Creating compatible files

(@]

Shape type 1 has 3 nodes (tri), shape type 2 is quad
i nt eger shapesi ze(2) /3, 4/

¢ W have 2 tris and 3 quads

i nt eger shapecounts(2) /2, 3/

nshapetypes = 2

nnodes = 9

nzones = 5

ndinms = 2
c Wite out connectivity infornmation

err = dbputzl (dbfile, "zonelist", 8, nzones, ndinms, nodelist,

LNODELI ST, 1, shapesi ze, shapecounts, nshapetypes, ierr)
c Wite an unstructured nesh
err = dbputum(dbfile, "mesh", 4, ndins, x, y, DB _F77NULL
"X, 1, "Y', 1, DB_F77NULL, 0, DB _FLOAT, nnodes, nzones,
"zonelist", 8, DB_F77NULL, O, DB _F77NULL, ierr)

3D unstructured meshes are

created much the same way as 2D

unstructured meshes are created.

The main difference is that 0
whereasin 2D, you use triangles 1
and quadrilateral zonetypes, in

3D, you use hexahedrons,

pyramids, prisms, and 1 2 3 2
tetrahedrons to compose your
mesh. The procedure for creating
the node coordinates is the same
with the exception that 3D meshes 4 7
also require a Z-coordinate. The 4 5 .
procedurefor creating the zone list 5 6
(connectivity information) is the !
same except that you specify cells 0: |3
using alarger number of nodes 1
because they are 3D. The order in
which the nodes are specifiedis 3 2 1 2
also moreimportant for 3D shapes Prism Hexahedron
because if the nodes are not given

in the right order, the zones can Figure 2-29: tNode ordering for Silo’s 3D unstructured zone
become tangled. The proper zone ypes

ordering for each of the four supported 3D zone shapesis shown in Figure 2-29.

Tetrahedron Pyramid

Writing Silofiles 31

Creating compatiblefiles

Figure 2-30: Node numbers on the left and the mesh, colored by zone type, on the right.

Hexhadrons (red), Pyramid (blue), Prism (yellow), Tetrahedron (green).

Figure 2-30 shows an example of asimple 3D unstructured mesh consisting of 2
hexahedrons, 1 pyramid, 1 prism, and 1 tetrahedron.

Listing 2-31: ucd3d.c: C-Language example for writing a 3D unstructured mesh.

/* Node coordi nates */
float x[] = {0.,2.,2.,

0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4
float y[] ={0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,
0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2

float z[] = {2., 2. ,O
float *coords[] = {x, vy, z};
/* Connectivity */
int nodelist[] = {

1,2,3,4,5,6,7,8, /' * hex, zone 1 */
5,6,7,8,9,10, 11,12, /* hex, zone 2 */
9,10, 11, 12, 13, /* pyram d, zone 3 */
2,3,16, 15,6, 7, [* prism zone 4 */
2,15,14,6 /[* tet, zone 5 */

i

int I nodelist = sizeof(nodelist) / sizeof(int);
/* shape type 1 has 8 nodes (hex) */

/* shape type 2 has 5 nodes (pyramd) */

/* shape type 3 has 6 nodes (prism */

/* shape type 4 has 4 nodes (tet) */

i nt shapesize[] = {8,5, 6, 4};

/* W have 2 hex, 1 pyramid, 1 prism 1 tet */
i nt shapecount s[] {2,1,1, 1};

i nt nshapetypes =
int nnodes = 16;
int nzones = 5;
int ndins = 3;

/* Wite out connectivity information. */

DBPut Zonel i st (dbfile, "zonelist", nzones, ndins, nodelist,

Ao

| nodel i st,

32

Writing Slo files

Creating compatible files

1, shapesize, shapecounts, nshapetypes);

/* Wite an unstructured nmesh. */

DBPut Ucdnmesh(dbfile, "mesh", ndins, NULL, coords, nnodes, nzones,
"zonelist", NULL, DB_FLOAT, NULL);

Listing 2-32: fucd3d.f: Fortran language example for writing a 3D unstructured mesh.

integer err, ierr, ndinms, nzones
i nt eger NSHAPETYPES, NNODES
par anet er (NSHAPETYPES = 4)
paraneter (NN = 16)
¢ Node coordi nates
real x(NN) /0.,2.,2.,0.,0
real y(NN) /0.,0.,0.,0.,2
real z(NN) /2.,2.,0.,0.,2
¢ Connectivity

i nt eger LNODELI ST

par amet er (LNODELI ST = 31)

i nteger nodelist(LNCDELIST) /1,2,3,4,5,6,7,8,

5,6,7,8,9, 10,11, 12,

9,10, 11, 12, 13,

2,3,16, 15,6, 7,

2,15, 14, 6/
Shape type 1 has
Shape type 2 has
Shape type 3 has nodes (prism
Shape type 4 has nodes (tet)

i nt eger shapesi ze(NSHAPETYPES) /8, 5, 6, 4/

c W have 2 hex, 1 pyramd, 1 prism 1 tet
i nt eger shapecount s(NSHAPETYPES) /2, 1, 1, 1/
nzones = 5
ndins = 3
c Wite out connectivity information.
err = dbputzl (dbfile, "zonelist", 8, nzones, ndins, nodelist,
LNCDELI ST, 1, shapesize, shapecounts, NSHAPETYPES, ierr)
c Wite an unstructured mesh
err = dbputun(dbfile, "nmesh", 4, ndins, x, y, z,
"X, 1, "Y', 1, "Z", 1, DB _FLOAT, NN, nzones,
"zonelist", 8, DB F77NULL, 0, DB_F77NULL, ierr)

nodes (hex)
nodes (pyramn d)

O o000
A~ O 01 00

Writing Silofiles 33

Creating compatiblefiles

4.10.1 Adding axislabelsand axisunits

Itispossibleto add additional
annotations to your meshes
that you store to Silo files
using Silo’s option list
mechanism. This subsection
covers how to changethe axis
titles and units that will be
used when Vislt plots your
mesh. By default, Vislt uses
“X-Axis’, “Y-Axis’, and “ Z-
AXxis’ when labelling the
coordinate axes. You can
override the default labels
using an option list. Option
lists are created with the
DBMakeOpt | i st function
and freed with the
DBFreeOpt | i st function.
All of the Silo functions for
writing meshes that we've Figure 2-33: Custom mesh labels and units along the X and Y axes
demonstrated so far can

accept option lists that contain custom axis labels and units. Refer to the Slo User’s
Manual for more information on addition options that can be passed via option lists.

Adding customized labels and units for amesh by using option lists ensuresthat Vislt uses
your customized labels and unitsinstead of the default values. Figure 2-33 shows how the
labels and units in the previous examples show up in Vislt’'s visualization window.

Listing 2-34: rect2d.c: C-Language example for associating new axis labels and units with a mesh.

/* Create an option list to contain |abels and units. */

DBoptlist *optlist = DBVakeOptlist(4);

DBAddOpt i on(optlist, DBOPT_XLABEL, (void *)"Pressure");

DBAddOpt i on(optlist, DBOPT_XUNITS, (void *)"kP");

DBAddOpt i on(optlist, DBOPT_YLABEL, (void *)"Tenperature");

DBAddOpt i on(optlist, DBOPT_YUNITS, (void *)"Degrees Cel sius");

/* Wite a quadnmesh with an option list. */

DBPut Quadnesh(dbfile, "quadnmesh", NULL, coords, dins, ndins,
DB_FLOAT, DB _COLLI NEAR, optlist);

/* Free the option list. */

DBFreeOpt | i st (optlist);

Listing 2-35: frect2d.f: Fortran language example for associating new axis labels and units with a
mesh

c Create an option list to contain labels and units.

34 Writing Slo files

Creating compatible files

integer err, ierr, optlistid
err dbrkopt!list(4, optlistid)
err dbaddcopt (optlistid, DBOPT_XLABEL, "Pressure", 8)
err dbaddcopt (optlistid, DBOPT_XUNI TS, "kP', 2)
err dbaddcopt (optlistid, DBOPT_YLABEL, "Tenperature", 11)
err dbaddcopt (optlistid, DBOPT_YUN TS, "Celsius", 7)
c Wite a quadnmesh with an option |ist.
err = dbputgm (dbfile, "quadnesh", 8, "xc", 2,
"yc", 2, "zc", 2, x, y, DB _F77NULL, dins, ndins,
DB FLOAT, DB COLLI NEAR, optlistid, ierr)
c Free the option |ist
err = dbfreeoptlist(optlistid)

411 Writing ascalar variable

Silo provides several different functions for writing variables; one for each basic type of
mesh: quadmesh (rectilinear and curvilinear), unstructured mesh, and point mesh. Each of
these functions can be used to write either zone-centered or node-centered data. This
section concentrates on how to write scalar variables; vector and tensor variable
components can be written as scalar variables and reassembled into vectors and tensors
using expressions, covered on page 47. This section’s code examples use the rectilinear,
curvilinear, point, and unstructured meshes that have appeared in previous code examples.

4.11.1 Zonecenteringvs. Node centering

Vislt supports two types of variable centering: zone-centering and node-centering. A
variable's centering indicates how its values are attached to the mesh on which the variable
is defined. When avariable is zone-centered, each zone is assigned a single value. If you
were to plot a zone-centered value in Vislt, each zone would be drawn using a uniform
color and picking anywhere in the zone would yield the same value. Arrays containing
values that are to be zone-centered on a mesh must contain the same number of elements
asthere are zones in the mesh. Node-centered arrays, on the other hand, contain a value
for every node in the mesh. When you plot a node-centered value in Vidlt, Vislt

Writing Silofiles 35

Creating compatiblefiles

interpolates the values from the nodes across the zone's surface, usually producing a
smooth gradient of values across the zone.

Figure 2-36: Zone-centering (left) and Node-centering (right)

4112 API Commonality

Each of the provided functions for writing scalar variables does have certain argumentsin
common. For example, al of the functions must be provided the name of the variable to
write out. The name that you pick is the name that will appear in Vislt's plot menus (see
Figure 2-37). Be careful when you pick your variable names because you should avoid
characters that include: punctuation marks, and spaces. Variable names should only
contain letters and numbers and they should begin with aletter. These guidelinesarein
place to assure that your datafiles will have the utmost compatibility with Visit's
expression language, which is defined in the Vislt User’s Manual.

All variables must be defined on amesh. If you examine the code examplesin this section,
each Silo function that writes out a variable will be passed the name of the mesh on which
the variable isto be defined.

Each of the Silo function callswill accept a pointer to the array that containsthe variable’s
data. The data can be stored in several internal formats: char, short,int,| ong,

f | oat , and doubl e. Since Silo’s variable writing functions use a pointer to pass the
data, you can pass a pointer that pointsto datain any of the mentioned types. In addition,
you must pass a flag that indicates to Silo the type of data stored in the array whose
address you' ve passed.

36

Writing Slo files

Creating compatible files

Most of the remaining argumentsto Silo’s variable writing functions are specific to the
types of meshes on which the variable is defined so the rest of this section will provide
examples for writing out variables that are defined on various mesh types.

Ploqs Piatits Dpalte
15 lsciion bo ail plots
Conlawr L
= .
= = E
Histogmm
4T Labal ' 1
[mosh » | Defauit
L1 Seadier ' VAT
o« var
L fn
i Suriace .
[3
jar coche Closs engins
!: WI““ E linreaai I ﬂl-nid-_"rﬂ

il

Figure 2-37: Variables in Vislt's plot menus

4.11.3 Rectilinear and curvilinear meshes

Recall from sections “Writing arectilinear mesh” on page 20 and “Writing a curvilinear
mesh” on page 23 that the procedure for creating rectilinear and curvilinear meshes was
similar and the chief difference between the two mesh types was in how their coordinates
were specified. While arectilinear mesh’s coordinates could be specified quite compactly
as separate X,Y,Z arrays made up of unigque values along a coordinate axis, the curvilinear
mesh required X,Y,Z coordinate arrays that contained the X,Y,Z values for every nodein
the mesh. Regardless of how the coordinates were specified, both mesh types contain
(NX-1)*(NY-1)*(NZ-1) zones and NX*NY*NZ nodes. This means that the code to write
avariable on arectilinear mesh will be identical to the code to write a zone-centered
variable on acurvilinear mesh! Silo provides the DBPut Quadvar 1 function to write
scalar variables for both rectilinear and curvilinear meshes,

Writing Silofiles 37

Creating compatiblefiles

j R

oW

; f [
i FII‘I i I.:i..';l

Figure 2-38: Zone-centered variables. Clock-wise from upper left,
float, double-precision, integer, char

Listing 2-39: quadvar2d.c: C-Language example for writing zone-centered variables.

/* The data rmust be (NX-1) * (NY-1) since it is zonal. */

float varl[] = {
0., 1., 2.,
3., 4., 5.,
6., 7., 8.,
9., 10., 11.

1

doubl e var2[] = {
0.00, 1.11, 2. 22,
3.33, 4.44, 5.55,
6.66, 7.77, 8.88,
9.99, 10.1, 11.11

1

int var3[] = {
o, 1, 2,
3, 4, 5
6, 7, 8,
9, 10, 11

i

char var4[] = {
o, 1, 2,
3, 4, 5

38 Writing Slo files

Creating compatible files

6, 7, 8,
9, 10, 11

b

/* Note dinms are 1 less than nesh’s dins in each dinension. */

int dinms[]={3, 4};

int ndins = 2;

DBPut Quadvar 1(dbfile, "varl", "quadnmesh", var1l, dinmns,
ndi ms, NULL, O, DB_FLOAT, DB _ZONECENT, NULL);

/* Wite a doubl e-precision variable. */

DBPut Quadvar 1(dbfile, "var2", "quadnmesh", (float*)var2, dinmns,
ndi ns, NULL, O, DB _DOUBLE, DB_ZONECENT, NULL);

/* Wite an integer variable */

DBPut Quadvar 1(dbfile, "var3", "quadnmesh", (float*)var3, dinmns,
ndi ms, NULL, O, DB_INT, DB_ZONECENT, NULL);

/* Wite a char variable */

DBPut Quadvar 1(dbfile, "var4", "quadnmesh", (float*)var4, dinmns,
ndi ms, NULL, 0, DB _CHAR, DB _ZONECENT, NULL);

Listing 2-40: fquadvar2d.f: Fortran language example for writing zone-centered variables.

integer err, ierr, dins(2), ndins, NX NY, ZX ZY

paraneter (NX = 4)

paranmeter (NY = 5)

paraneter (ZX = NX-1)
paraneter (ZY = NY-1)

real var 1(ZX, ZY)
doubl e precision var2(2zX 2Y)
i nt eger var 3(ZX, ZY)
char acter var 4(zZX, ZY)
data var1/0., 1., 2.,

3., 4., 5.,

6., 7., 8.,

9., 10., 11./

data var2/0.,1.11, 2. 22,
3.33, 4.44, 5.55,
6.66, 7.77, 8.88,
. 9.99, 10.1, 11.11/
data var3/0,1, 2,
3, 4, 5,
6, 7, 8,
.9, 10, 11/
data var4/0,1, 2,
3, 4, 5,
6, 7, 8,
.9, 10, 11/
data di ns/ ZX, ZY/
ndinms = 2
err = dbputqvl(dbfile, "varl", 4, "quadnmesh", 8, varl, dins,
ndi ms, DB F77NULL, O, DB FLOAT, DB ZONECENT, DB F77NULL, ierr)
¢ Wite a doubl e-precision variable
err = dbputqvl(dbfile, "var2", 4, "quadnmesh", 8, var2, dins,
ndi ms, DB _F77NULL, O, DB DOUBLE, DB ZONECENT,
DB F77NULL, ierr)

Writing Silofiles 39

Creating compatiblefiles

c Wite an integer variable
err = dbputqvl(dbfile, "var3", 4, "quadnmesh", 8, var3, dins,
ndi ms, DB_F77NULL, 0, DB_I NT, DB_ZONECENT, DB _F77NULL, ierr)
c Wite a char variable
err = dbputqvl(dbfile, "var4", 4, "quadmesh", 8, var4, dinmns,
ndi ms, DB_F77NULL, 0, DB_CHAR, DB_ZONECENT, DB_F77NULL, ierr)

Both of the previous code examples produce a data file with 4 different scalar arrays as
shown in Figure 2-38. Note that in both of the previous code examples, the same
DBPut Quadvar 1 function (or dbput qv1 in Fortran) function was used to write out
data arrays of differing types.

The DBPut Quadvar 1 function can also be used to write out node centered variables.
There are two differences that you must observe when writing a node-centered variable as
opposed to writing a zone-centered variable. First, the data array that you pass to the
DBPut Quadvar 1 function must be larger by 1 in each of its dimensions and you must
pass DB_NODECENT instead of DB_ZONECENT.

Listing 2-41: quadvar2d.c: C-Language example for writing node-centered variables.

/* The data nust be NX * NY since it is nodal. */
#define NX 4
#define NY 5

float nodal[] = {
0., 1., 2., 3
4., 5., 6., 7.
8., 9., 10., 11.

12., 13., 14., 15.
16., 17., 18., 19.
}s
/* Nodal variabl es have sane #val ues as #nodes in nesh */
int dinms[]={NX, NY};
int ndins = 2;
DBPut Quadvar 1(dbfil e, "nodal", "quadnesh", nodal, dins,
ndi ms, NULL, O, DB _FLOAT, DB NODECENT, NULL);

Listing 2-42: fquadvar2d.f: Fortran language example for writing node-centered variables.

c The data nmust be NX * NY since it is nodal
integer err, ierr, dins(2), ndins, NX NY
paranmeter (NX = 4)
paranmeter (NY = 5)
real nodal (NX, NY)
data di ns/ NX, NY/
data nodal /0., 1., 2., 3.

4., 5., 6., 7.,
8., 9., 10., 11.,
12., 13., 14., 15.,
16., 17., 18., 19./

40

Writing Slo files

Creating compatible files

ndins = 2
¢ Nodal vari abl es have sane #val ues as #nodes in nmesh
err = dbputqgvl(dbfile, "nodal", 5, "quadmesh", 8, nodal,
di ns, ndins, DB F77NULL, 0, DB _FLOAT, DB_NODECENT,
DB _F77NULL, ierr)

Writing variablesto 3D curvilinear and rectilinear meshes follows the same basic rules as
writing variables for 2D meshes. For zone-centered variables, you must have (NX-
1)*(NY-1)*(NZ-1) data values and for node-centered variables, you must have
NX*NY*NZ data values. Figure 2-43 shows what the data values look like for the Silo
files produced by the examplesto come.

1 1

Figure 2-43: Zone-centered variable in 3D and a node-centered variable in 3D (shown
with a partially transparent plot)

Listing 2-44: quadvar3d.c: C-Language example for writing variables on a 3D mesh.

#define NX 4

#define Ny 3

#define NZ 2

/* Wite a zone-centered variable. */

void wite zonecent quadvar (DBfile *dbfile)

{
int i, dinms[3], ndins = 3;
int ncells = (NX-1)*(NY-1)*(NzZ-1);
float *data = (float *)mall oc(sizeof (float)*ncells);
for(i = 0; i < ncells; ++i)
data[i] = (float)i;
dinms[0] = NX-1; dins[1] = NY-1; dins[2] = NZ-1;
DBPut Quadvar 1(dbfile, "zonal", "quadnesh", data, dins,
ndi ms, NULL, O, DB_FLOAT, DB _ZONECENT, NULL);
free(data);
}

/* Wite a node-centered variable. */

Writing Silofiles 41

Creating compatiblefiles

void wite_nodecent _quadvar (DBfile *dbfile)

{
int i, dinms[3], ndins = 3;
i nt nnodes = NX*NY*NZ,
float *data = (float *)mall oc(sizeof (float)*nnodes);
for(i = 0; i < nnodes; ++i)
data[i] = (float)i;
dins[0] = NX; dinms[1] = NY; dins[2] = Nz
DBPut Quadvar 1(dbfil e, "nodal", "quadnesh", data, dins,
ndi ns, NULL, O, DB_FLOAT, DB _NODECENT, NULL);
free(data);
}

Listing 2-45: fquadvar3d.f: Fortran language example for writing variables on a 3D mesh.

c Wite a zone-centered vari abl e.
subroutine wite_zonecent_quadvar (dbfil e)
inmplicit none
i nteger dbfile
i nclude "silo.inc"
integer err, ierr, dins(3), ndins, i,j,k,index, ZX 2Y,272Z

paraneter (ZX = 3)
paraneter (ZY = 2)
paraneter (ZZ = 1)

i nt eger zonal (ZX, 2ZY, ZZ)
data di ns/ ZX, 2Y, ZzzZ/
index = 0
do 10020 k=1, 277
do 10010 j =1, ZY
do 10000 i =1, ZzX
zonal (i,j,Kk) = index
index = index + 1
10000 conti nue
10010 conti nue
10020 conti nue

ndinms = 3

err = dbputqvl(dbfile, "zonal", 5, "quadnesh", 8, zonal, dins,
ndi ms, DB F77NULL, O, DB _INT, DB ZONECENT, DB F77NULL, ierr)
end

c Wite a node-centered vari abl e.
subroutine wite_nodecent _quadvar (dbfil e)
inmplicit none
i nteger dbfile
i nclude "silo.inc"
integer err, ierr, dinms(3), ndins, i,j,k,index, Nz, NY, Nz
paraneter (NX = 4)
paranmeter (NY = 3)
paraneter (NZ = 2)
real nodal (NX, NY, N2)
data di ns/ NX, NY, Nz/
index = 0
do 20020 k=1, Nz
do 20010 j =1, NY

42 Writing Slo files

Creating compatible files

do 20000 i=1, NX
nodal (i,j, k) = float(index)
i ndex = index + 1
20000 conti nue
20010 conti nue
20020 conti nue
ndins = 3
err = dbputqgvl(dbfile, "nodal", 5, "quadnmesh", 8, nodal, dins,
ndi ns, DB_F77NULL, O, DB_FLOAT, DB_NODECENT, DB F77NULL, ierr)
end

4.11.4 Point meshes

Point meshes, which were meshes composed of a set of points can, like other mesh types,
have values associated with each point. Silo provides the DBPut Poi nt Var 1 function
that you can use to write out a scalar variable stored on a point mesh. Nodes and the zones
are really the same thing in a point mesh so you can consider zone-centered scalars to be
the same thing as node-centered scalars.

™ al® o
""‘"‘
ol _.,E:r .
Rpim Y
& :J‘“J‘ Ly
a s
o n‘fgn:n :
o 1
*h * b
el
ﬁ-ﬂxls
I :
¥ 0.3
o |
b

Figure 2-46: Scalar variable defined on a point mesh

Listing 2-47: pointvar3d.c: C-Language example for writing variables on a 3D point mesh.

/* Create sone val ues to save. */
int i;
float var[NPTS];

Writing Silofiles 43

Creating compatiblefiles

for(i = 0; i < NPTS;, ++i)
var[i] = (float)i;

/* Wite the point variable. */

DBPut Poi ntvar 1(dbfile, "pointvar", "pointnmesh", var, NPTS,
DB_FLQOAT, NULL);

Listing 2-48: fpointvar3d.f: Fortran language example for writing variables on a 3D point mesh.

c Create sone values to save
integer err, ierr, i, NPTS
paranmeter (NPTS = 100)
real var (NPTS)
do 10010 i = 1, NPTS
var(i) = float(i-1)
10010 conti nue
c Wite the point variable
err = dbput pvl(dbfile, "pointvar", 8, "pointnesh", 9,
var, NPTS, DB FLOAT, DB F77NULL, ierr)

4115 Unstructured meshes

i

HEm u
L

Figure 2-49: A 2D unstructured mesh with a zonal variable (left) and a nodal variable (right).

Writing a variable on an unstructured mesh is done following a procedure similar to that
for writing a variable on a point mesh. Aswith other mesh types, a scalar variable defined
on an unstructured grid can be zone-centered or node-centered. If the variable is zone-
centered then the data array required to store the variable on the unstructured mesh must
be a1-D array with the same number of elements as the mesh has zones. If the variable to
be stored is node-centered then the array containing the variable must be a 1-D array with
the same number of elements as the mesh has nodes. Thinking of the dataarray asa 1-D
array simplifies indexing since the number used to identify a particular node is the same

Writing Slo files

Creating compatible files

index that would be used to access data in the variable array (assuming 0-originin C and
1-origin in Fortran). Since the data array is aways 1-D for an unstructured mesh, the code
to store variables on 2D and 3D unstructured meshesisidentical. Figure 2-49 shows a 2D
unstructured mesh with both zonal and nodal variables. Silo provides the

DBPut Ucdvar 1 function for writing scalar variables on unstructured meshes.

Listing 2-50: ucdvar2d.c: C-Language example for writing variables on an unstructured mesh.

float nodal []

float zonal []

int nnodes = 9;

i nt nzones = 5;

/* Wite a zone-centered variable. */

DBPut Ucdvar 1(dbfile, "zonal", "nesh", zonal, nzones, NULL, O,
DB _FLOAT, DB _ZONECENT, NULL);

/* Wite a node-centered variable. */

DBPut Ucdvar 1(dbfile, "nodal", "nesh", nodal, nnodes, NULL, O,
DB _FLOAT, DB_NODECENT, NULL);

I
~

Listing 2-51: fucdvar2d.f: Fortran language example for writing variables on an unstructured mesh.

integer err, ierr, NNODES, NZONES
par anet er (NNODES = 9)
par anet er (NZONES = 5)
real nodal (NNODES) /1.,2.,3.,4.,5.,
real zonal (NZONES) /1.,2.,3.,4.,5./
c Wite a zone-centered vari abl e.
err = dbputuvl(dbfile, "zonal", 5, "mesh", 4, zonal, NZONES,
DB _F77NULL, 0, DB_FLOAT, DB _ZONECENT, DB _F77NULL, ierr)
c Wite a node-centered vari abl e.
err = dbputuvl(dbfile, "nodal", 5, "mesh", 4, nodal, NNODES,
DB _F77NULL, 0, DB_FLOAT, DB _NCDECENT, DB _F77NULL, ierr)

6.,7.,8.,9./

Writing Slo files 45

Creating compatiblefiles

4.11.6 Addingvariable units

All of the examples for writing scalar variables presented so
far have focused on the basics of writing avariable array to a
Silofile. Silo’s option list mechanism allows a variable object
to be annotated with various extrainformation. In the case of
scalar variables, the option list passed to DBPut Quadvar 1
and DBPut Ucdvar 1 can contain the units that describe the

3 000
variable being stored. Refer to the Slo User’s Manual for a

complete list of the options accepted by the [N
DBPut Quadvar 1 and DBPut Ucdvar 1 functions. When a . " 000
scalar variable has associated units, the units appear in the R !
variable legend in Vislt's visualization window (see Figure 2- Figure 2.52: Plot legend
52)- with units

If you want to add units to the variable that you write, you

must create an option list to pass to the function writing your variable. You may recall that
option lists are created with the DBMakeOpt | i st function and freed with the
DBFreeOpt | i st function. In order to add units to the option list, you must add the

DBOPT_UNI TS option.

Listing 2-53: ucdvar2d.c: C-Language example for writing a variables with units.

/* Create an option list and add “g/cc” units to it. */
DBoptlist *optlist = DBVakeOptlist(1);

DBAddOpt i on(optlist, DBOPT_UNITS, (void*)"g/cc");

/* Wite a variable that has units. */

DBPut Ucdvar 1(dbfile, "zonal™, "mesh", zonal, nzones, NULL, O,

DB_FLOAT, DB_ZONECENT, optlist);
/* Free the option list. */
DBFreeOpt | i st (optlist);

Listing 2-54: fucdvar2d.f: Fortran language example for writing a variables with units.

c Create an option list and add “g/cc” units to it.

integer err, optlistid

err = dbnkoptlist(1l, optlistid)

err = dbaddcopt (optlistid, DBOPT_UNITS, "g/cc", 4)
c Wite a variable that has units.

err = dbputuvi(dbfile, "zonal", 5, "mesh", 4, zona

DB_F77NULL, 0, DB_FLOAT, DB ZONECENT, optlistid,

c Free the option list.

err = dbfreeoptlist(optlistid)

NZONES,

ierr)

46

Writing Slo files

Creating compatible files

412 Singleprecision vs. Double precision

After having written some variables to a Silo file, you've no doubt learned that you can
pass a pointer to data of many different representations and precisions (char, int, float,
double, etc.). When you pass data to a Silo function, you also must pass aflag that tells
Silo how to interpret the data stored in your data array. For example, if you have single
precision floating point data then you would tell Silo to traverse the data as such using the
DB_FLQOAT typeflag in the function call to DBPut Quadvar 1. Many of the functionsin
the Silo library require atype flag to indicate the type of data being passed to Silo. In fact,
even the functions to write mesh coordinates can accept different data types. This means
that you can use double-precision to specify your mesh coordinates, which can be
immensely useful when dealing with very large or very small objects.

Listing 2-55: C-Language example for writing a mesh with double-precision coordinates.

/* The X,y arrays contain doubl e-precision coordinates. */

doubl e X[NY][NX], y[NY][NX];

int dinms[] = {NX NY};

int ndins = 2;

/* Note that x,y pointers are cast to float to conformto API. */

float *coords[] = {(float*)x, (float*)y};

/[* Tell Silo that the coordinate arrays are actually doubles. */

DBPut Quadrmesh(dbfile, "quadnmesh", NULL, coords, dins, ndins,
DB_DOUBLE, DB NONCOLLI NEAR, NULL);

413 Writing expressions

You can plot derived quantitiesin Vislt by creating expressions that involve variables from
your database. Sometimes, it is useful to include expression definitionsin your Silo file so
they are available to Vislt without you first having to create them. Silo provides the
DBPut def var s function so you can write your expressions to a Silo file. Expression
names should be valid Vislt expression names, as defined in the Vislt User’s Manual.
Likewise, the expression definitions should contain only expressions that are supported by
the Vislt expression language.

While Vislt's expression language can be useful for calculating amultitude of expressions,
it can be particularly useful for grouping vector or tensor components into vector and
tensor variables. If you store vector or tensor components as scalar variablesin your Silo
file then you can easily create expressions that assemble the components into real vector
or tensor variables without significantly increasing your file's storage requirements.
Writing out vector and tensor variables as expressions involving scalar variables also
prevents you from having to use more complicated Silo functionsin order to write out the
vector or tensor data.

Listing 2-56: defvars.c: C-Language example for writing out expression definitions.

Writing Slo files 47

Creating compatiblefiles

/* Wite sonme expressions to the Silo file. */

const char *nanes[] = {"velocity", "speed"};

const char *defs[] = {"{xc,yc,zc}", "magnitude(velocity)"};
int types[] = {DB_VARTYPE VECTOR, DB_VARTYPE_SCALAR};

DBPut Def vars(dbfile, "defvars", 2, names, types, defs, NULL);

Listing 2-57: fdefvars.f: Fortran language example for writing out expression definitions.

integer err, ierr, types(2), Inanes(2), |defs(2)
i nt eger nunmexpressions, oldlen
c Initialize sone 20 character |ength strings
character*20 nanmes(2) /’'velocity ",
' speed "
character*20 defs(2) /’'{xc,yc,zc} ",
"magni tude(vel ocity) '/
c Store the length of each string
data | names/ 8, 5/
data | defs/10, 19/
dat a types/ DB_VARTYPE_VECTOR, DB_VARTYPE_SCALAR/
c Set the maximumstring length to 20 since that’'s how | ong
C our strings are
ol dl en = dbget 2dstrl en()
err = dbset 2dstrl en(20)
c Wite out the expressions
nunexpressions = 2
err = dbputdefvars(dbfile, "defvars", 7, nunexpressions,
nanes, | nanes, types, defs, |defs, DB F77NULL, ierr)
c Restore the previous value for maxi mumstring |ength
err = dbset2dstrlen(oldl en)

In the previous Fortran example for writing expressions, there are more functions involved
than just thedbput def var s function. It iscritical to set the maximum 2D string length
for stringsin the Silo library, using the dbset 2dst r | en function, so the Fortran
interface to Silo will be able to correctly traverse the string data passed to it from Fortran.
In the previous example, we used 20 characters for both the expression names and
definitions. We call dbset 2dst r | en to set the maximum allowable 2d string length to
20 characters before we pass our arrays of 20 character stringsto the dbput def var s
function. In addition, we must also pass valid lengths for the expression name and
definition strings. The lengths should be at least 1 character long but no longer than the
maximum allowable string length, which we set to 20 characters in the example program.
Passing valid string lengths isimportant so the expressions that you save to your file do
not contain any extra characters, such astrailing spaces.

4.14 Creating a master filefor parallel

When a parallel program saves out its data files, often the most efficient method of 1/O is
for each processor to write its own piece of the ssmulation, or domain, to its own Silofile.

48

Writing Slo files

Creating compatible files

If each processor writesits own Silo file then no communication or synchronization must
take place to manage access to a shared file. However, once the simulation has compl eted,
there are many files and all of them are required to reconstitute the simulated object.
Plotting each domain file in Vislt would be very tedious so Silo provides functions to
create what is known as a“master file”, which isatop-level file that effectively unifies all
of the domain files into awhole. When you open amaster filein Vislt and plot variables
out of it, all domains are plotted.

Master files contain what are known as multimeshes, multivars, and multimaterials. These
objects are lists of filenames that contain the appropriate domain variable. They also
contain some meta-information about each of the domains that helps Vislt perform better
in parallel. Strategies for using metadata to improve Vislt's 1/0O performance will be
covered shortly.

4.14.1 Creating a multimesh

A multimesh is an object that unites smaller domain-sized meshes into awhole mesh. The
multimesh object contains alist of the filenames that contain a piece of the named mesh.
When you tell Vislt to plot a multimesh, Vislt reads the named mesh in all of the required
domain files and processes the mesh in each file, to produce the entire mesh.

Figure 2-58: Multimesh colored by its domain number

The following example, shown in Figure 2-58, uses the mesh from the 2D rectilinear mesh
example program and repesats it as 4 domains. Note that the mesh forming the domainsis
trandated in X and Y so that the edges are shared. In the given example, the meshes that
make up the entire mesh are stored in separate Silo files: multimesh.1, multimesh.2,

Writing Slo files 49

Creating compatiblefiles

multimesh.3, and multimesh.4. The mesh and any data that may be defined on it is stored
in those files. Remember that storing pieces of a single mesh is commonplace when
parallel processes write their own file. Plotting each of the smaller filesindividually in
Vislt is not neccessary when amaster file has been generated since plotting the multimesh
object from the master file will cause Vislt to plot each of its constituent meshes. The code
that will follow shows how to use Silo’s DBPut Mul t i mesh function to write out a
multimesh object that reassembles meshes from many domain files into a whole mesh.

Thelist of meshes or itemsin amulti-object generally take the form: path:itemwhere path
isthefile system path to the item and itemis the name of the object being referenced. Note
that the path may be specified as arelative or absolute path using names valid for thefile
system containing the master file. However, we strongly recommend using only relative
paths so the master file does not reference directories that exist only on onefile system.
Using relative paths makes the master files much more portable since they allow the data
files to be moved. The path may also refer to subdirectories within the file being
referenced since Silo files may contain directories that help to organize related data. The
following examples assume that the domain files will exist in the same directory asthe
master file since the path includes only the names of the domain files.

Listing 2-59: multimesh.c: C-Language example for writing a multimesh.

void wite_masterfile(void)
{
DBfile *dbfile = NULL;
char **nmeshnanmes = NULL;
int dom nnmesh = 4, *meshtypes = NULL;
/* Create the list of mesh names. */
meshnanmes = (char **)mal |l oc(nmesh * sizeof (char *));
for(dom = 0; dom < nnesh; ++don)

{
char tnp[100];
sprintf(tnp, "nultinmesh. %: quadmesh”, dom;
meshnames[dom = strdup(tnp);

}

/* Create the list of mesh types. */

nmeshtypes = (int *)malloc(nmesh * sizeof(int));

for(dom = 0; dom < nnesh; ++don)
nmesht ypes[domi = DB _QUAD RECT;

/* Open the Silo file */

dbfile = DBCreate("multinmesh.root", DB CLOBBER, DB _LOCAL,
“Master file", DB HDF5);

/* Wite the nultinmesh. */

DBPut Mul ti nesh(dbfile, "quadnesh", nnesh, nmeshnanes,
nmesht ypes, NULL);

/* Close the Silo file. */

DBCl ose(dbfile);

/* Free the menory*/

for(dom = 0; dom < nnesh; ++don)
free(nmeshnanes[dony);

free(meshnanes);

50 Writing Slo files

Creating compatible files

free(meshtypes);

Listing 2-60: fmultimesh.f: Fortran language example for writing a multimesh.

c Create a newsilo file

(el]

subroutine wite_naster()

inmplicit none

i nclude "silo.inc"

integer err, ierr, dbfile, nnesh, oldlen

character*20 nmeshnanmes(4) /'’ nultinesh. 1: quadnesh’
"mul ti mesh. 2: quadnesh’
"mul timesh. 3: quadnesh’
"mul ti mesh. 4: quadnesh’ /

i nteger | nmeshnanes(4) /20,20, 20, 20/

i nteger neshtypes(4) /DB _QUAD RECT, DB_QUAD_RECT,
DB_QUAD RECT, DB _QUAD RECT/

err = dbcreate("multinmesh.root", 14, DB _CLOBBER, DB_LOCAL,
“mul ti mesh root", 14, DB HDF5, dbfile)
if(dbfile.eq.-1) then
wite (6,*) "Could not create Silo filel\n’
return
endi f

Set the maximum string length to 20 since that’'s how | ong our
strings are

ol dl en = dbget 2dstrl en()
err = dbset2dstrl en(20)

c Wite the nultinesh object.

nmesh = 4
err = dbput mesh(dbfile, "quadnesh", 8, nnesh, nmeshnanes,
| meshnanes, neshtypes, DB F77NULL, ierr)

c Restore the previous value for maxi mumstring |ength

err = dbset2dstrlen(oldl en)

c Close the Silo file

err = dbcl ose(dbfile)
end

Sometimes it can be advantageous to have each processor write its files to a unique
subdirectory (e.g. proc-0, proc-1, proc-2, ...). You can aso choose for each processor to
writeitsfilesto acommon directory so all filesfor a given time step are contained in a
single place (e.g. cycle0000, cycle0001, cycle0002, ...). Generaly, you will want to tailor
your strategy to the strengths of your file system to spread the demands of writing files
across as many 1/0 nodes as possible in order to increase throughput. The organization
strategies mentioned so far are only suggestions and you will have to determine the
optimum method for storing domain files on your computer system. Moving your domain
files to subdirectories can make it easier to navigate your file system and can provide
benefits later such as Vislt not having to check permissions, etc on so many files. Code to

Writing Slo files

51

Creating compatiblefiles

create the list of mesh names where each processor writes its data to a different
subdirectory that contains al files for a given time step might look like the following:

int cycle = 100;

for(dom= 0; dom < nnesh; ++dom

{
char tnp[100];
sprintf(tnp, "proc-%d/ nultinesh. %94d: quadnesh”, dom cycle);
nmeshnanmes[dom = strdup(tnp);

4.14.2 Creating a multivar

Figure 2-61: Multivar displayed on its multimesh

A multivar object is the variable equivalent of a multimesh object. Like the multimesh
object, amultivar object contains alist of filenames that make up the variable represented
by the multivar object. Silo provides the DBPut Mul t i var function for writing out
multivar objects.

Listing 2-62: multivar.c: C-Language example for writing a multivar.

void wite_rnultivar(DBfile *dbfile)

{

52 Writing Slo files

Creating compatible files

char **varnanes = NULL

int dom nvar = 4, *vartypes = NULL

/* Create the list of var nanmes. */

varnames = (char **)mal |l oc(nvar * sizeof(char *));
for(dom= 0; dom < nvar; ++don

{
char tnp[100];
sprintf(tnp, "nultivar.%:var", dom
var nanes[don] = strdup(tnp);

}

/* Create the list of var types. */
vartypes = (int *)malloc(nvar * sizeof(int));
for(dom= 0; dom < nvar; ++don)
vartypes[don] = DB_QUADVAR
/* Wite the nultivar. */
DBPut Mul tivar (dbfile, "var", nvar, varnanes, vartypes,
/* Free the menory*/
for(dom= 0; dom < nvar; ++don)
free(varnames[dom);
free(varnanes);
free(vartypes);

NULL) ;

Listi

c Set

(¢

ng 2-63: fmultivar.f: Fortran language example for writing a multivar.

subroutine wite_nultivar(dbfile)
inmplicit none
i nclude "silo.inc"
integer err, ierr, dbfile, nvar, oldlen
character*20 varnanmes(4) /’nultivar. 1l:var ,
"mul tivar. 2: var ,
"mul tivar. 3:var ,
. "mul tivar. 4:var "
i nteger |varnanmes(4) /14,14, 14, 14/
i nteger vartypes(4) /DB_QUADVAR, DB QUADVAR
DB_QUADVAR, DB_QUADVAR/

ol dl en = dbget 2dstrl en()
err = dbset2dstrlen(20)

c Wite the nmultivar

nvar = 4
err = dbputnmvar(dbfile, "var", 3, nvar, varnanes,
vartypes, DB_F77NULL, ierr)

c Restore the previous value for maxi numstring |ength

err = dbset2dstrlen(ol dl en)
end

the maxi mum string length to 20 since that’s how | ong
our strings are

| var nanes,

Writing Slo files

53

Creating compatiblefiles

5.0

4143 EMPTY contributions

During the course of a calculation, sometimes only a subset of processors will contribute
data. This means that they will not write data files. When some processors do not write
datafiles, creating your multi-objects can become more complicated. Note that because of
how Vislt represents its domain subsets, etc, you will want to keep the number of
filenames in a multi-object equal to the number of processors that you are using (the
maximum number of domains that you will generate). If the length of the list varies over
time then Vislt’s subsetting controls may not behave as expected. To keep things simple, if
you have N processors that write N files, you will alwayswant N entries in your multi-
objects. If a processor does not contribute any data, insert the“ EMPTY” keyword into the
multi-object in place of the path and variable. The* EMPTY” keyword allows the size of
the multi-object to remain fixed over time even as the number of processors that contribute
data changes. Keeping the size of the multi-object fixed over time ensures that Vislt's
subsetting controls will continue to function as expected. Note that if you use the
“EMPTY” keyword in amultivar object then the same entry in the multimesh object for
the variable must also contain the “ EMPTY” keyword.

! Listing 2-64: C-Language example using the EMPTY keyword. !

/* Processors 3,4 did not contribute so use EMPTY. */

char *meshnanes[] = {“proc-1/fil e000/ nesh”, “proc-2/file000/nesh”,
“EMPTY”, “EMPTY"};

int meshtypes[] = {DB_QUAD RECT, DB QUAD RECT,
DB_QUAD RECT, DB QUAD RECT};

int nnmesh = 4;

/* Wite the nmultinmesh. */

DBPut Mul ti mesh(dbfile, "mesh", nnesh, neshnanes, neshtypes, NULL);

Writing VTK files

VTK (Visualization Toolkit) files provide asimple, flexible way to import data into Vislt.
VTK files can be written in human-readable ASCII form or in binary form. VTK files may
also be created in the legacy VTK file format or in their newer XML -based format. The
human-readable ASCII form for legacy VTK filesis described in the VTK File Formats
document found on the Web at http://public.kitware.comyVTK/pdf/file-formats.pdf. You
can create code in any language to write datato the VTK file format if you follow the
format guidelinesin the VTK File Formats document.

In order to simplify the creation of legacy VTK files, which can be susceptible to
formatting mistakes, Vislt providesthevi sit _wri ter library. Thevisit_witer
library isimplemented in C and can be called from the C, C++, and Python programming
languages. Thevi sit _wri t er library provides a handful of easy-to-use functions for
producing VTK files. This section will show how to usethevi sit _wri ter library to
create VTK filesthat can be used to import datainto Vislt.

Writing VTK files

Creating compatible files

51 Getting started with visit_writer

Thevi sit_writer library isincluded in source code formin Vislt's source code
distribution. The C-version of the library consists of 2 files called visit_writer.c and
visit_writer.h that are stored in the tools/writer directory of Vislt's source code tree.

5.1.1 Usingvisit_writer in C programs

Whenyou usethevi sit _wri ter library, you canincludethevisit_writer.c file directly
in the list of source files for your project. Source files that use functions from the
visit_writer library mustincludethe visit_writer.h header file. The
visit_writer library hasno external dependencies so no additional libraries are
required to link programsthat usethevi si t _wri t er library, provided thevisit_writer.c
source code file was included in the project.

5.1.2 Usingvisit_writer in Python programs

The Python version of thevi sit _wr it er library isimplemented as a Python extension
module, which is adynamically loaded executable file containing thevi sit_writer
functions. The compiledvi si t _wri t er extension moduleis not currently distributed
in Vislt's binary distributions so you will have to build it before you can useit in your
Python programs. Fortunately, building the visit_writer module is easy if you allow
Python to build it for you. To begin, open aterminal window and cd into Vislt's source
code tree and then into the tools/writer directory. Next, type the following Python code
into afile called setup.py:

fromdistutils.core inport setup, Extension
nodul el = Extension(’visit_witer’,

include dirs=1["."],

sources = ['visit_witer.c', "py_visit _witer.c'])
setup (nane = 'visit_witer’,

version = '1.0",

description
ext _nodul es

"This nmodule lets us wite VIK files.’,
[modul el])

Once you have created the setup.py file, run the following command in your terminal
window to build the visit_writer Python extension module.

pyt hon setup. py build

Once Python buildsthevi sit _wri t er extension module, you caninstall it by running
the following command:

pyt hon setup.py install

After thevi sit _writ er module has been built and installed, it should be available
when you run Python. To test whether the module was successfully installed, run python
and type: import visit_writer at the Python prompt. If Python does not complain then the
module was successfully built and loaded. Whenever you want to use the visit. modulein

Writing VTK files 55

Creating compatiblefiles

your Python scripts, you must first issuethei nport visit_witer directive. If you
want to find out more information about a particular vi si t _wri t er function once
you've imported the visit_writer module, you can type: pri nt

visit_witer.__doc__ tomakePython print out the documentation string for the
visit_writer module

5.2 Regular mesheswith data

A regular mesh, or Cartesian mesh, is an implicit mesh in which all zones have the same
size and are axis-aligned (see Figure 2-65). Furthermore, in this context, all zones are
squares or cubes with aside length of 1. The extents are determined by the number of
zonesin each dimension. A regular mesh is atype of rectilinear mesh where the zones are
not permitted to differ in size. Thevi sit _wri t er library providesthe
write_regul ar _mesh function for writing out regular meshes and datato VTK files.

Figure 2-65: Regular mesh with data created using
visit_writer

Listing 2-66: vwregmesh.c: C-Language example for writing a regular mesh with data.

#include <visit_witer.h>
#i ncl ude <mat h. h>

int main(int argc, char *argv[])
{

#define NX 10

#defi ne NY 20

56

Writing VTK files

Creating compatible files

#define NZ 30
int i,j,k, index = 0;
int dims[] = {NX, NY, NzZ};
int nvars = 2;
int vardins[] = {1, 1};
int centering[] = {0, 1};
const char *varnanes[] = {"zonal", "nodal"};
float zonal [NZ- 1] [NY- 1] [NX- 1], nodal [NZ] [NY] [NX] ;
float *vars[] = {(float *)zonal, (float *)nodal};
/* Create zonal variable */
for(k = 0; k < Nz-1; ++k)
for(j =05 j < NY-1; ++j)
for(i = 0; i < NX-1; ++i, ++index)

zonal [K][j][i] = (float)index;
/* Create nodal variable. */
for(k = 0; k < NzZ; ++Kk)

for(j =05 j < NY; +4])
for(i = 0; i < NX ++i)

nodal [K][j1[1] = sqgrt(i*i + j*j + k*k);

/* Use visit_witer to wite a regular nmesh with

write_regul ar_mesh("vw egnesh.vtk", 0, dinms, nvars,

centering, varnanes, vars);
return O;

data. */

var di ns,

Listing 2-67: vwregmesh.py: Python language example for writing a regular mesh with data.

inmport visit_witer, math
NX 10
NY = 20
Nz = 30
Create a zonal variable
zonal = []
index =0
for k in range(Nz-1):
for j in range(NY-1):

for i in range(NX-1):
zonal = zonal + [index]
index = index + 1
Create a nodal variable
nodal = []

for k in range(N2):
for j in range(NY):

for i in range(NX):
nodal = nodal + [math.sqrt(i*i + j*j + k*k)]
Use visit_witer to wite a regular nmesh with data
dinms = (NX; NY, N2)
vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))

visit_witer.WiteRegul ar Mesh("vw egnesh2. vtk", 0, dins, vars)

Writing VTK files

57

Creating compatiblefiles

5.3

Rectilinear mesheswith data

Recall from “Writing arectilinear mesh” on page 20 that arectilinear meshisa2D or 3D
mesh where all coordinates are aligned with the axes and coordinates along each axis can
have different, non-uniform spacing. Thevi sit _wri t er library providesthe
wite_rectilinear_mesh function for writing rectilinear meshes. The following
code examples will use the same 2D and 3D rectilinear meshes that were used for the Silo
examples.

o8

vataeTod e
cho: 2

TN W
- - e i
g 4 §F 0 i

Figure 2-68: 2D rectilinear mesh with zonal variable

Listing 2-69: vwrect2d.c: C-Language example for writing a rectilinear mesh with data.

#include <visit_witer.h>

i nt

{

mai n(int argc, char *argv[])

#define NX 4
#define NY 5

/* Rectilinear nesh coordi nates. */

float x[] = {0., 1., 2.5, 5.}:
float y[] = {0., 2., 2.25, 2.55, 5.};
float z[] = {0.};

int dinms[] = {NX, Ny, 1};

int ndins = 2;

/* Zonal and Nodal variable data. */
float zonal [NY-1][NX-1], nodal [NY] [NX];

Writing VTK files

Creating compatible files

/* Info about the variables to pass to visit_witer
int nvars = 2;

int vardins[] = {1, 1};

int centering[] = {0, 1};

const char *varnanes[] = {"zonal", "nodal"};

float *vars[] = {(float*)zonal, (float*)nodal};

/* Create a zonal variable. */
int i,j,index = 0;
for(j =0; jJ < NY-1; ++4))
for(i = 0; i < NX-1; ++i, ++index)
zonal [j][i] = (float)index;

/* Create a nodal variable. */

i ndex = O;
for(j =0; j < NY; ++4))
for(i = 0; i < NX; ++i, ++index)

nodal [j][i] = (float)i ndex;

*/

/* Pass the data to visit_witer to wite a VIK file.*/

write rectilinear_mesh("vwect2d.vtk”, 0, dins, X, Y,

vardi ms, centering, varnanes, vars),;

return O;

Z, nvars,

Listing 2-70: vwrect2d.py: Python language example for writing a rectilinear mesh with data.

inmport visit_witer

., 1., 2.5, 5.)
., 2., 2.25, 2.55, 5.)

N‘<><§§
o O ol b~

(
(
0.
Create a zonal variable
zonal = []
index =0
for j in range(NY-1):

for i in range(NX-1):
zonal = zonal + [index]
i ndex index + 1

Create a nodal variable
nodal = []
index =0
for j in range(NY):
for i in range(NX):
nodal = nodal + [index]
i ndex = index + 1

Writing VTK files

59

Creating compatiblefiles

vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))
visit_witer. WiteRectilinearMesh("vwect2d.vtk", 0, x, y, z, vars)

54 Curvilinear mesheswith data

A curvilinear mesh is similar to arectlinear mesh; the main difference between the two
mesh types is how coordinates are specified. Recall that in arectilinear mesh, the
coordinates are specified individually for each axis and only a small subset of the nodesin
the mesh are provided. In a curvilinear mesh, you must provide an X,Y,Z value for every
nodeinthemesh. Thevi sit _writer library providesthe
write_curvilinear_mesh function to write out curvilinear meshes and any
variables defined on them. Figure 2-71 shows an example of a 3D curvilinear mesh with a
zonal variable.

B v ira A ik
ek 3

-

Figure 2-71: 3D curvilinear mesh with zonal variable

Listing 2-72: vwecurv3d.c: C-Language example for writing a curvilinear mesh with data.

#include <visit_witer. h>

#define NX 4
#define NY 3
#define NZ 2

int main(int argc, char *argv[])

{

60

Writing VTK files

Creating compatible files

/* Curvilinear mesh points stored x0,y0, z0, x1,y1, z1,...*/

float pts[] = {0, 0.5, 0, 1, O, O, 2, O, O,
3, 0.5, 0, O, 1, O, 1, 1, O,
2, 1, 0, 3, 1, 0, 0, 1.5, O,
1, 2, 0, 2, 2, 0, 3, 1.5, O,
o, 0.5, 1, 1, 0, 1, 2, O, 1,
3, 0.5, 1, o, 1, 1, 1, 1, 1,
2,1, 1, 3, 1, 1, 0, 1.5, 1,
1, 2,1, 2, 2, 1, 3, 1.5 1

i

int dims[] = {NX, NY, NZ};

/* Zonal and nodal variable data. */

float zonal [NZ- 1] [NY-1] [NX- 1], nodal [NZ] [NY] [NX] ;
/* Info about the variables to pass to visit_witer. */
int nvars = 2;

int vardins[] = {1, 1};

int centering[] = {0, 1};

const char *varnanes[] = {"zonal", "nodal"};
float *vars[] = {(float *)zonal, (float *)nodal};
int i,j,k, index = 0;

/* Create zonal variable */
for(k = 0; k < Nz-1; ++k)
for(j =0; j < NY-1; ++4)
for(i = 0; i < NX-1; ++i, ++index)
zonal [K][j][i] = (float)index;

/* Create nodal variable. */
i ndex = O;
for(k = 0; k < NzZ; ++k)
for(j =0; j < NY; ++4))
for(i = 0; i < NX; ++i, ++index)
nodal [K][j][i] = index;

/* Pass the data to visit_witer to wite a binary VIK file. */
wite_curvilinear_nesh("vwcurv3d.vtk", 1, dinms, pts, nvars,
vardi ms, centering, varnanes, vars),;

return O;

Listing 2-73: vwcurv3d.py: Python language example for writing a curvilinear mesh with data.

inmport visit_witer

NX = 4

NY = 3

Nz = 2

Curvilinear mesh points stored x0,y0, z0, x1,y1, z1, ...
ts = 0.5, 0, 1, 0, 0, 2, 0, O,

Vi
(0
3, 0.5, 0,0 1, 0, 1, 1, 0,

Writing VTK files 61

Creating compatiblefiles

, 0, 3
0, 2

.5, 1
.5, 1

PNWOoOEkDN
NP OONLBEF

1
1

N =

Create a zona

zonal =[]
index =0

PO
e
BN

GOk o oo

PRPPRPPOO

~— -

vari abl e

for k in range(Nz-1):
for j in range(NY-1):
for i in range(NX-1):

zonal
i ndex

Create a noda

nodal = []
index =0

zonal + [index]
index + 1

vari abl e

for k in range(N2):
for j in range(NY):
for i in range(NX):

noda
i ndex

Pass data to visit_witer to wite a binary VIK file.

nodal + [index]
index + 1

dinms = (NX, NY, NZ2)

vars = (("zonal ",
visit_witer.WiteCurvilinearMesh("vwcurv3d. vtk",

1, 0, zonal),

("nodal ",

0, dims, pts, vars)

62

Writing VTK files

Creating compatible files

55 Point mesheswith data

A point mesh isaset of 2D or 3D points where the nodes also constitute the cellsin the
mesh. Thevi sit_writer library providesthewr i t e_poi nt _nesh function to
write out point meshes and datato VTK files.

D it 2 whe
Cocha 3

-
| r o L] -] o
. -_. . & - . .‘ o, : L

T - b W

. L .u.”"_ 1'_ ﬂ'_ * - -] =‘I-

| i & a = oW
ér _guo o '

L] H., o nn‘i o2 o

' B o W =]
b it

F

Figure 2-74: Point mesh with scalar data and vector data

Listing 2-75: vwpoint3d.c: C-Language example for writing a point mesh with data.

#include <visit_witer.h>
#define NPTS 100

int main(int argc, char *argv[])
{
/* Create sone points and data to save. */
int i;
float pts[NPTS][3], data[NPTS];
int nvars = 2;
int vardims[] = {1, 3};
const char *varnanes[] = {"data", "ptsvec"};
float *vars[] = {(float *)pts, data};

for(i = 0; i < NPTS; ++i)

{
/* Make a point. */
float t = ((float)i) / ((float)(NPTS-1));
float angle = 3.14159 * 10. * t;

Writing VTK files 63

Creating compatiblefiles

pts[i][0] =t * cos(angle);
pts[i][1] =t * sin(angle);
pts[i][2] =t;

/* Make a scal ar */
data[i] =t * cos(angle);
}
/* Pass the nmesh and data to visit_witer. */
write_point_mesh("vwpoint3d.vtk", 1, NPTS, (float*)pts, nvars,
vardi ms, varnanes, vars);

return O;

Listing 2-76: vwpoint3d.py: Python language example for writing a point mesh with data.

inmport visit_witer, math

NPTS = 100

pts =[]

data = []

for i in range(NPTS)

Make a point

t = float(i) / float(NPTS-1)

angle = 3.14159 * 10. * t

pts = pts + [t * math.cos(angle), t * math.sin(angle), t]
Make a scal ar

data = data + [t * math.cos(angle)]

Pass the nmesh and data to visit_witer
vars = (("data", 1, 1, pts), ("ptsvec", 3, 1, pts))
visit_witer. WitePointMesh("vwpoint3d.vtk", 1, pts, vars)

5.6 Unstructured mesheswith data

Unstructured meshes are collections of different types of zones and are useful because
they can represent more complex mesh geometries than the structured meshes can.
Unstructured meshes are specified using the cell types and node orderings listed in
“Writing an unstructured mesh” on page 29. This section explains how to use the
visit_writer library'swrite_unstructured_mnesh function to write out
unstructured meshes and data.

64 Writing VTK files

Creating compatible files

Figure 2-77: 2D unstructured mesh with zonal variable

Listing 2-78: vwrucd2d.c: C-Language example for writing an unstructured mesh with data.

#include <visit _witer.h>

int main(int argc, char *argv[])
{

/* Node coordi nates */

i nt nnodes = 9;

int nzones = 5;

float pts[] = {0., 0., 0., 2. 0.

3., 3., 0., 5., 3., 0., 0., 5., 0.

2., 5, 0., 4., 5., 0., 5 0
/* Zone types */
int zonetypes[] = {M SIT_TRIANGLE, VI SIT_TRI ANGLE,

VISIT QUAD, VISIT_QUAD, VISIT_QUAD};

/* Connectivity */

int connectivity[] = {

, 3,6, /[* tri zone 1. */
, 7,6, /[* tri zone 2. */
,1,6,5 /* quad zone 3. */
,2,4,3, [|* quad zone 4. */
4,8,7 |/* quad zone 5. */

Writing VTK files 65

Creating compatiblefiles

/* Data arrays *
float nodal[]
float zonal []

/
{1,2,3,4,5
{1,2,3, 4,5};

/* Info about the variables we're passing to visit_witer. */
int nvars = 2;

int vardins[] = {1, 1};

int centering[] = {0, 1};

const char *varnanes[] = {"zonal", "nodal"};

float *vars[] = {zonal, nodal};

/* Pass the nmesh and data to visit_witer. */
write_unstructured_nesh("vwicd2d. vtk", 1, nnodes, pts, nzones,
zonetypes, connectivity, nvars, vardins, centering,
var names, vars);

return O;

Listing 2-79: vwucd2d.py: Python language example for writing an unstructured mesh with data.
inmport visit_witer

Node coordi nates

pts = (0., 0., 0., 2., 0., 0., 5.
3., 3., 0., 5., 3., 0., 0. .
2., 5., 0., 4., 5., 0., 5., 5.

Connectivity

connectivity = (
(visit_witer.triangle, 1,3,6),
(visit_witer.triangle, 3,7,6),
(visit_witer.quad, 0,1,6,5),
(visit_witer.quad, 1,2,4,3),
(visit_witer.quad, 3,4,8,7)

)

Data arrays
nodal (1,2,3,4,5,6,7,8,9)
zonal (1,2,3,4,5)

Pass the data to visit_witer

vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))

visit_witer. WiteUnstructuredMesh("vwicd2d. vtk", 1, pts,
connectivity, vars)

5.7 Creating a master filefor parallel (.visit file)

Thevi sit_writer library createslegacy VTK filesand thelegacy VTK fileformat has
no mechanism for storing more than a single mesh. Furthermore, legacy VTK files have

66 Writing VTK files

Creating compatible files

no concept of amaster file or of multi-objects like Silo uses to unite domains into awhole.
Fortunately, Vislt provides a construct called a.visit file that addresses this shortcoming.

A .visit fileisatext file, ending with the “.visit” extension, that contains the names of

domain files that make up the whole. A .visit file can be created to group files for any file
format that Vislt can read. Your parallel program can still write individual VTK files and

you can create a .visit file before visualizing the files so Vislt knows to open all of the

relevant files as opposed to you creating plots of each individual file. The following code
example listswhat a .visit file looks like if you have 4 VTK domain files that contain the

same variables and all of them are to be plotted at once.

I NBLOCKS 4

proc- 0.
proc-1.
proc- 2.
proc- 3.

The .visit file can be used for indicating which VTK files are part of atime-varying
database in addition to indicating how to reassemble domain filesinto awhole. In the
previous example, there were 4 domain files and only 1 time step. If you want to have

vt k
vt k
vt k
vt k

more than 1 time step, just add more filesto the list. The! NBLOCKS directive tells Vislt
that every block of 4 files are related in asingle time step. If you had two time steps then

your .visit file might look like this:

I NBLOCKS 4

proc- 0. 0000.
proc-1. 0000.
proc- 2. 0000.
proc- 3. 0000.
proc-0. 0001.
proc-1. 0001.
proc-2. 0001.
proc- 3. 0001.

vt k
vt k
vt k
vt k
vt k
vt k
vt k
vt k

Writing VTK files

67

Creating compatiblefiles

68 Writing VTK files

Chapter 3 Creating compatiblefiles||
Advanced topics

1.0 Overview

This chapter elaborates on some of the advanced topicsinvolved in creating files that Vislt
can read. Most applications should be able to write out all of their data using information
contained in the previous chapter. This chapter introduces advanced topics such as
incorporating metadata to accelerate Vislt's performance as well as some less common
data representations. Many of the examplesin this chapter use the Silo library, which was
introduced in the previous chapter. For more information on getting started with the Silo
library, see “Writing Silo files” on page 13.

2.0 Writing vector data

The components of vector data are often stored to files asindividua scalar variables and
Vislt uses an expression to compose the scalars back into a vector field. If you use the Silo
library, you can always choose instead to store your vector data as a multi-component
variable. The previous chapter provided several examples that use the Silo library to write
scalar variables on rectilinear, curvilinear, point, and unstructured meshes. The functions
that were used to write the scalars were ssimplified forms of the functions that are used to
write vector data. The scalar functions that were used to write data for a specific mesh type
aswell as the vector function equivalents are listed in the following table:

Mesh type Scalar function Vector function
Rectilinear mesh DBPut Quadvar 1 DBPut Quadvar
Curvilinear mesh DBPut Quadvar 1 DBPut Quadvar
Point mesh DBPut Poi nt var 1 DBPut Poi nt var

Overview Getting Data into Vislt Manual 69

Creating compatiblefiles |l - Advanced topics

Mesh type Scalar function Vector function
Unstructured mesh DBPut Ucdvar 1 DBPut Ucdvar

The differences between a scalar function and a vector function are small. In fact, the
argument lists for a scalar function and a vector function are nearly identical in the Silo
library’s C-Language interface. The chief difference isthat the vector functions take two
additional arguments and the meaning of one existing argument is modified. Thefirst new
argument is an integer indicating the number of components contained by the variable to
be written. The next difference is that you must pass an array of pointers to character
strings that represent the names of each individual component. Finally, the argument that
was used to passthe datato the DBPut Quadvar 1 function, now in the DBPut Quadvar
function, accepts an array of pointersto the various arrays that contain the variable
components. For more complete information on each of the arguments to the functions
that Silo uses to write multi-component data, refer to the Slo User’s Manual.

Listing 3-1: vectorvar.c: C-Language example for writing vector data using Silo.

int i, dinms[3], ndins = 3;

int nnodes = NX*NY*NZ;

float *conp[3];

char *varnanmes[] = {"nodal conp0", "nodal _conpl", "nodal conp2"};
conp[0] = (float *)mall oc(sizeof (float)*nnodes);

conp[1] (float *)mall oc(sizeof (fl oat)*nnodes);

conp[2] (float *)mall oc(sizeof (fl oat)*nnodes);

for(i = 0; i < nnodes; ++i)

{

(float)i; /*vector conponent 0*/
(float)i; /*vector conponent 1*/
(float)i; /*vector conponent 2*/

conp[O] [i]
conp[1] [i]
conp[2] [i]

}
dinms[0] = NX; dins[1] = NY; dins[2] = Nz
DBPut Quadvar (dbfile, "nodal", "quadmesh",
3, varnanes, conp, dins,
ndi ms, NULL, O, DB_FLOAT, DB_NODECENT, NULL);
free(comp[0]);
free(comp[1]);
free(comp[2]);

Silo’s Fortran interface does not provide functions to write out multi-component data such
as vectors. If you use the Fortran interface to Silo, you will have to write out the vector
components as separate scalar variables and then write an expression to your Silo file that
composes the components into a single vector variable.

Listing 3-2: fvectorvar.f: Fortran-Language example for writing vector data using Silo.

subroutine wite_nodecent quadvar (dbfile)

70

Writing vector data

Creating compatiblefiles I - Advanced topics

inmplicit none

i nteger dbfile

i nclude "silo.inc"

integer err, ierr, dins(3), ndins,i,j,k,index, NX, NY, NZ
paranmeter (NX = 4)

paranmeter (NY = 3)

paranmeter (NZ 2)

r eal compO(NX, NY, NZ), conmpl(NX, NY, NZ), conp2(NX, NY, NZ)
dat a di nms/ NX, NY, Nz/

index =0

do 20020 k=1, Nz

do 20010 j=1, Ny

do 20000 i=1, NX

compO(i,j,k) = float(index)
compl(i,j,k) = float(index)
comp2(i,j,k) = float(index)
i ndex = index + 1

20000 conti nue
20010 conti nue
20020 conti nue
ndins = 3
err = dbputqgvl(dbfile, "n_conpO", 11, "quadnesh", 8, conpO,
di ms, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL
. derr)
err = dbputqgvl(dbfile, "n_conpl", 11, "quadnesh", 8, conpl,
di ms, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL
. derr)
err = dbputqgvl(dbfile, "n_conp2", 11, "quadnesh", 8, conmp2,
di ms, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL
ierr)
end

subroutine wite_defvars(dbfile)
inmplicit none
i nteger dbfile
i nclude "silo.inc"
i nt eger err, ierr, types(2), Inanmes(2), ldefs(2), oldlen
c Initialize some 20 character length strings
character*40 nanes(2) /’ zonal vec ,
. " nodal vec "
character*40 defs(2) /’'{z_conp0,z_conpl, z_conp2} ",
. "{n_conp0, n_conpl, n_conp2} "
c Store the length of each string
data | names/ 8, 8/
data | defs/37, 37/
data types/ DB_VARTYPE VECTOR, DB_VARTYPE_VECTOR/
c Set the maximumstring length to 40 since that’s how | ong our
c strings are
ol dl en = dbget 2dstrl en()
err = dbset 2dstrl en(40)
c Wite out the expressions
err = dbputdefvars(dbfile, "defvars", 7, 2, nanes, |nanes,
types, defs, ldefs, DB F77NULL, ierr)
c Restore the previous value for maxi mumstring | ength

Writing vector data 71

Creating compatiblefiles |l - Advanced topics

3.0

err = dbset 2dstrl en(ol dl en)
end

Adding metadata for performance boosts

Vislt incorporates several performance boosting strategies that make use of metadata, if it
isavailable. Most of the metadata applies to increasing parallel performance by reducing
the amount of 1/0O and subsequent processing that is required. The I/O reductions are
realized by not reading in and processing domains that will contribute nothing to the final
image on the screen. In order to prevent domains from being read in, your multi-objects
must have associated metadata for each of the domains that they contain. When a Silo
multi-object contains metadata about all of its constituent domains, Vislt can make work-
saving decisions since it knows the properties of each domain without having to read in
the data for each domain.

This section explains how to add metadata to your Silo multi-objects using option lists.

M etadata attached to multi-objects allow Vislt to determine important data characteristics
such as data extents or the spatial extents of the mesh without having to first read and
process al domains. Such knowledge allows Vislt to restrict the number of domains that
are processed, thus reducing the amount of work and the time required to display images
on your screen.

3.1 Writing data extents

Providing data extents can help Vislt only read in and process those domains that will
contribute to the final image. Many types of plots and operators use data extents for each
domain, when they are provided, to perform a simple upfront test to determine if adomain
contains the values which will be used. If adomain is not needed then Vislt will not read
that domain because it is known beforehand that the domain does not contain the desired
value.

An example of aplot that uses data extentsin order to save work is Vislt’s Contour plot.
The Contour plot creates contours (lines or surfaces where the data has the same value)
through a dataset. Consider the example shown in Figure 3-3, where the entire mesh and
scalar field are divided into four smaller domains where the data extents of each domain
are stored to the file so Vislt can perform optimizations. Before the Contour plot executes,
it tells Vislt the data values for which it will make contours. Suppose that that you wanted
to seethe areaswhere the value in the scalar field are equal to 11.5. The Contour plot takes
that 11.5 contour value and compares it to the data extents for all of the domainsto see
which domains will be needed. If a domain will not be needed then Vislt will make no
further effort to read the domain or processit, thus saving work and making the plot
appear on the screen faster than it could if the data extents were not available in thefile

72

Adding metadata for performance boosts

Creating compatiblefiles Il - Advanced topics

metadata. In the above example, the value of 11.5 isonly present in domain 3, which
means that the Contour plot will only return aresult if it processes data from domain 3.

Domain 2 Domain 1
Min=5.0 Min=0.0
Max=11.2 Max=7.1
Domain 3 Domain 4
Min=7.1 Min=5.0
Max=14.1 Max=11.2

Figure 3-3: Example Mesh and Pseudocolor plots with the data extents for each domain of the Pseudocolor
plot’s scalar variable.

Only processdomain 3 Contour plot in domain 3

Figure 3-4: Only process domain 3 (left) to yield the Contour plot of value 11.5 (right).

The other domains are not processed in this case because they do not contain the required
value of 11.5. After the comparisons have been made, Vislt knows which domains will

Writing data extents 73

Creating compatiblefiles |l - Advanced topics

have to be processed and it can divide the set of domains (just domain 3 in this case) that
will contribute to the visualization among processors so they can execute the plot and
return datato Vislt's viewer where it can be displayed.

To add the data extents for each processor to the metadata using Silo, you must add the
data extentsto the option list that you passto the DBPut Mul t i var function call. Having
the data extents for each domain readily available in the Multivar object ensuresthat Vislt
will have enough information to determine which domains will be necessary for
operations such as Contour without having to read all of the data to determine which
domains contribute to the visualization. The data extents must be stored in adouble
precision array that has enough entries to accommodate the min and max values for each
domain in the multivar object. The layout of the min and max values within that array are
asfollows. mi n_doml, nax_donl, m n_don, max_donk, ...,

m n_domN, nmax_donN

Listing 3-5: dataextents.c: C-Language example for writing data extents using Silo.

const int tw = 2;

doubl e ext ent s[NDOVAI NS] [2] ;

DBoptlist *optlist = NULL;

/* Cal cul ate the per-domain data extents for this variable. */

[* Wite the nultivar. */

optlist = DBVakeOptlist(2);

DBAddOpt i on(optlist, DBOPT_EXTENTS SIZE, (void *) &t wo);

DBAddOpt i on(optlist, DBOPT_EXTENTS, (void *)extents);

DBPut Mul tivar(dbfile, "var", nvar, varnames, vartypes, optlist);

DBFreeOpt | i st (optlist);
I I
I I

Listing 3-6: fdataextents.f: Fortran language example for writing data extents using Silo.

doubl e precision extents(2, NDOVAI NS)
integer err, optlist
c Calculate the per-domain data extents for this variable.
c Wite the multivar
err dbnkoptlist(2, optlist)
err dbaddi opt (optlist, DBOPT_EXTENTS_SI ZE, 2)
err dbadddopt (opt | i st, DBOPT_EXTENTS, extents)
err dbput mvar (dbfile, "var", 3, nvar, varnanmes, |varnanes,
. vartypes, optlist, ierr)
err = dbfreeoptlist(optlist)

74

Writing data extents

Creating compatiblefiles Il - Advanced topics

3.2 Writing spatial extents

If you provide spatial extents for each domain in your database then Vislt can use that
information during spatial data reduction operations, such as slicing, to reduce the number
of domains that must be read from disk and processed.

Figure 3-7: Only the red domains need to be processed to compute the slice plane if spatial extents
are provided.

Spatial extents for adomain contain the minimum and maximum values of the coordinates
within that domain, also called the domain’s bounding box. The spatial extents must be
stored in adouble precision array that has enough entries to accommodate the min and
max coordinate values for each domain in the multimesh object. The layout of the min and
max values within that array for 3D domains are asfollows: xm n_dont,

ym n_doml, zm n_doml, xmax_doml, ymax_donil, zmax_dont,
xm n_domN, ym n_domN, zm n_domN, xmax_domN, ymax_domN\,
zmax_domN. In the event that you have 2D domains then you can omit the z-components
of the min and max values and tell Silo that there are 4 values per min/max tuple instead of
the 6 values required to specify min and max values for 3D domains.

Listing 3-8: spatialextents.c: C-Language example for writing 3D spatial extents using Silo.

const int six = 6;

doubl e spatial _extent s[NDOVAI NS] [6] ;

DBopt i st *optlist = NULL;

/* Cal cul ate the per-domain spatial extents for this nesh. */

for(int i = 0; i < NDOVAINS; ++i)

{
spatial _extents[i][0]
spatial _extents[i][1]
spatial _extents[i][2]

xmn; /* xmn for i'th domain */
ymn; /* ymin for i’th domain */
zmn; /* zmn for i'th domain */

Writing spatial extents 75

Creating compatiblefiles |l - Advanced topics

Xxm n;
ynmax;
ZBx;

spatial _extents[i][3]
spatial _extents[i][4]
spatial _extents[i][5]

}

[* Wite the nultinmesh. */
optli st DBVakeOpt | i st (2);
DBAddOpt i on(optli st,
DBAddOpt i on(optli st,
DBPut Mul ti mesh(dbfil e,
DBFreeOpt | i st (optlist);

"mesh",

/* xmax for
/* ymax for
/* zmax for

DBOPT_EXTENTS_SI ZE,
DBOPT_EXTENTS,
nnesh,

i"th domain */
i"th domain */
i"th domain */

(void *)&six);
(void *)spatial _extents);
meshnames, neshtypes, optlist);

Listing 3-9: fspatialextents.f: Fortran language example for writing 3D spatial extents using Silo.

doubl e precision spatial _extents(6, NDOVAI NS)

integer optlist, err, dom

c Calculate the per-donain spatial extents for this mesh.
do 10000 don¥1, NDOVAI NS
spatial _extents(1,dom) = xmn
spatial _extents(2,dom) = ymn
spatial _extents(3,dom) = zmn
spatial _extents(4,dom) = xmn
spatial _extents(5,dom) = ynmax
spatial _extents(6,dom) = znmax
10000 conti nue
c Wite the nultinmesh
err = dbnkoptlist(2, optlist)
err = dbaddi opt (optlist, DBOPT_EXTENTS SIZE, 6)
err = dbadddopt (optlist, DBOPT_EXTENTS, spatial extents)
err = dbput mesh(dbfile, "quadnesh", 8, nnesh, nmeshnanes,
| meshnanes, neshtypes, optlist, ierr)

err = dbfreeoptlist(optlist)

4.0 Ghost zones

Ghost zones are zones external to a domain, which correspond to zones in an adjacent
domain. Ghost zones allow Vislt to ensure continuity between domains containing zone-
centered data, making surfaces such as Contour plots continuous across domain
boundaries instead of creating surfaces with ugly gaps at the domain boundaries. Ghost
zones also allow Vislt to remove internal surfaces from the visualized data for plots such
as Pseudocolor, which only wants to keep the surfaces that are external to the model.
Removing internal surfaces resultsin fewer primitives that must be rendered on the
graphics card and that increases interactivity with plots. See Figure 3-10 for examples of
the problems that ghost zones alow Vislt to fix.

76

Ghost zones

Creating compatiblefiles Il - Advanced topics

Without ghost zones With ghost zones

Without ghost zones With ghost zones

Figure 3-10: Vislt can use ghost zones to ensure continuity and to remove internal surfaces

Ghost zones can be stored into the database so Vislt can read them when the datais
visualized. Ghost zones can also be created on-the-fly for structured (rectilinear and
curvilinear) meshes if multimesh adjacency information is provided. This section will
show how to write ghost zonesto thefile. If you are interested in providing multimesh
adjacency information so you can write smaller files and so Vislt can automatically create
ghost zones then refer to the documentation for the DBPut Mul t i meshadj functionin
the Slo User’s Guide.

Ghost zones 77

Creating compatiblefiles Il - Advanced topics

4.1 Writing ghost zonesto your files

You can write ghost zones to your files using the Silo library or you can instead write a
multimesh adjacency object, covered in the Slo User’s Guide, that Vislt can use to
automatically create ghost zones. This section will cover how to use the Silo library to
store ghost zones explicitly in your files.

Thefirst step in creating ghost zones isto add alayer of zones around the mesh in each
domain of your database where adomain boundary exists. Each zonein the layer of added
ghost zones must match the location and have the same data value as the zone in the
domain that it is meant to mirror in order for Vislt to be able to successfully use ghost
zones to remove domain decomposition artifacts. This means that you must change your
code for writing out meshes and variables so your meshes have an addition layer of zones
for each domain boundary that isinternal to the model. Your variables must also contain
valid data values in the ghost zones since providing a domain with knowledge of the data
values of its neighboring domainsis the entire point of adding ghost zones. Note that you
should not add ghost zones on the surface of a domain where the surface is external to the
model. When ghost zones are erroneously added to external surfaces of the model, Vislt
removes the external faces and this can cause plotsto beinvisible.

Ghost zon Domain boundary

Domain 1 Domain 2

Figure 3-11: The zones that are both red and green are real zones in one domain and ghost zones
in another.

Figure 3-11 shows two domains: domainl (red) and domain2 (green). The boundary
between (blue) the two domainsis the interface that would exist between the domains if
there were no ghost zones. When you add a layer of ghost zones, each domain intrudes a

78 Ghost zones

Creating compatiblefiles I - Advanced topics

little into the other domain’s bounding box so the zones in one domain’s layer of ghost
zones match the zones in the other domain’s external layer of zones. Of course, domains
on both sides of the domain boundary have ghost zones to assure that the Vislt will know
the proper zone-centered data val ues whether it approaches the domain boundary from the
left or from theright. Thefirst row of cellson either side of the domain boundary are ghost
zones. For example, if you look at the upper left zone containing the “G” for ghost zone,
the “G” isdraw in the green part of the zone, while the red part of the zone contains no
“G”. This means that the zone in question is a zone in domainl, the red domain, but that
domain2 has a zone that exactly matches the location and values of the zone in the red
domain. The corresponding zone in domain2 is a ghost zone.

/*
int dom= 0,
for(zdom = 0;

rectilinear mesh without ghost zones.

Create each of the domain neshes. */
xdom ydom zdom
zdom < NzZDOVS; ++zdom)

for(ydom = 0; ydom < NYDOMVS; ++ydom
for(xdom = 0; xdom < NXDOMS; ++xdom ++dom
{

float xc[NX], yc[NY], zc[NZ];

float *coords[] = {xc, yc, zc};

int index = 0;

float xstart, xend, ystart, yend, zstart,

int xzones, yzones, zzones, nzones;

i nt xnodes, ynodes, znodes;

/[* Create a new directory. */

char dirnane[100];

sprintf(dirnane, "Domai n%93d", don;

DBMWKDI r (dbfil e, dirname);

DBSet Di r (dbfil e, dirnane);

/* Determ ne default start,

xstart = (float)xdom* XSl ZE;
xend = (float) (xdom+l) * XSI ZE;
xzones = NX-1;

ystart = (float)ydom * YSIZE;
yend = (float)(ydom+l) * YSIZE;
yzones = NY-1;

zstart = (float)zdom* ZSI ZE;
zend = (float)(zdom+l) * ZSI ZE;
zzones = NZ- 1,

xnodes = xzones + 1;

ynodes = yzones + 1;

znodes = zzones + 1;

/* Create the nmesh coordinates. */
for(i = 0; i < xnodes; ++i)

{

Listing 3-12: spatialextents.c: C-Language example for writing a 3D, domain-decomposed

zend;

end coordi nates */

Ghost zones

79

Creating compatiblefiles |l - Advanced topics

float t = (float)i / (float)(xnodes-1);
xc[i] = (1.-t)*xstart + t*xend

}

for(i = 0; i < ynodes; ++i)

{
float t = (float)i / (float)(ynodes-1);
yc[i] = (1.-t)*ystart + t*yend

}

for(i = 0; i < znodes; ++i)

{
float t = (float)i / (float)(znodes-1);
zc[i] = (1.-t)*zstart + t*zend;

}

/* Wite a rectilinear nesh. */

di ms[0] = xnodes;

di ms[1] = ynodes;

di ms[2] = znodes;

DBPut Quadnmesh(dbfil e, "quadnmesh", NULL, coords,
DB_FLOAT, DB COLLI NEAR, NULL);

/* Go back to the top directory. */
DBSetDir (dbfile, "..");

di s, ndi ns,

Once you have changed your mesh-writing code to add alayer of ghost zones, where
appropriate, you must indicate that the extralayer of zones are ghost zones. If you use
Silo’'s DBPut Quadnesh function to write your mesh, you can indicate which zones are
ghost zones by adding DBOPT_LO OFFSET and DBOPT_HI _ OFFSET to pass arrays
containing high and low zone index offsetsin the option list. If you are adding ghost zones
to an unstructured mesh, you would instead adjust thel o_of f set and hi _of f set
arguments that you pass to the DBPut Zonel i st 2 function. The next code listing shows
the additions made in order to support ghost zones in a domain-decomposed rectilinear

mesh. The additions are underlined.

Listing 3-13: ghostzonesinfile.c: C-Language example for writing a 3D, domain-decomposed

rectilinear mesh with ghost zones.

[* Determne the size of a zone. */
float ¢cx, cy, cz:

cX = XSIZE / (float)(NX-1):
cy = YSIZE / (float)(NY-1):
cz = ZSIZE /| (float)(Nz-1):

/* Create each of the donmin neshes. */
int dom= 0, xdom ydom zdom

for(zdom = 0; zdom < NZDOMS; ++zdon)
for(ydom = 0; ydom < NYDOMS; ++ydon)
for(xdom = 0; xdom < NXDOMS; ++xdom ++dom

float xc[NX], yc[NY], zc[NZ];
float *coords[] = {xc, yc, zc};

80

Ghost zones

Creating compatiblefiles I - Advanced topics

int index = 0;

float xstart, xend, ystart, yend, zstart, zend;
int Xxzones, yzones, zzones, Nzones;

i nt xnodes, ynodes, znodes;

int hi_offset[3], lo offset[3]:

DBoptlist *optlist = NULL;

/* Create a new directory. */

char dirnanme[100] ;

sprintf(dirnanme, "Domai n¥©3d", dom
DBMWKDi r (dbfile, dirnane);
DBSet Di r (dbfil e, dirnane);

/* Determ ne default start, end coordi nates */

xstart = (float)xdom* XSI ZE;
xend = (float)(xdom+l) * XSIZE;
xzones = NX-1

ystart = (float)ydom* YSIZE;
yend = (float)(ydom+l) * YSIZE;
yzones = NY-1;

zstart = (float)zdom* ZSl ZE;
zend = (float)(zdom+l) * ZSIZE;
zzones = NZ-1;

[* Set the starting hi/lo offsets. */
|l o _offset[0] 0;

lo_offset[1]
lo_offset[2]
hi _of fset[0]
hi _offset[1]
hi _of fset[2]

Qeeee

[* Adjust the start and end coordi nates based on whet her
* or not we have ghost zones.

*

if(xdom > 0)

L

xstart -= cx;
lo offset[0] = 1;
++Xxzones:

1
i f(xdom < NXDOVE- 1)
{

xend += cx;
hi offset[0]
++xzones:

1l
=

1
if(ydom > 0)
{

ystart -= cy:
lo offset[1]
++yzones:

1l
=

if(ydom < NYDOVSE- 1)

Ghost zones 81

Creating compatiblefiles |l - Advanced topics

L
yend += cy;
hi offset[1]

tt+yzones:

1l
=

1
if(zdom > 0)
{

Zstart -= cz:
lo _offset[2]
++zzones:

1l
=

1
if(zdom < NZDOVE- 1)
{

zend += cz:
hi offset[2]
++zzones:

1l
=

r

xnodes
ynodes
znodes

xzones + 1;
yzones + 1;
zzones + 1;

/* Create the nesh coordi nates. */

for(i = 0; i < xnodes; ++i)

{
float t = (float)i / (float)(xnodes-1);
xc[i] = (1.-t)*xstart + t*xend

}

for(i = 0; i < ynodes; ++i)

{
float t = (float)i / (float)(ynodes-1);
yc[i] = (1.-t)*ystart + t*yend

}

for(i = 0; i < znodes; ++i)

{
float t = (float)i / (float)(znodes-1);
zc[i] = (1.-t)*zstart + t*zend

}

/* Wite a rectilinear nesh. */

di ms[0] = xnodes;

di ms[1] = ynodes;

di ms[2] = znodes;

optlist = DBVakeOptlist(2);

DBAddOpt i on(optlist, DBOPT H OFFSET. (void *)hi offset):

DBAddOpt i on(optlist, DBOPT LO OFFSET., (void *)lo offset):

DBPut Quadnesh(dbfile, "quadnmesh", NULL, coords, dinms, ndins,

DB FLOAT., DB CO.LINEAR, optlist):
DBFreeQptlist(optlist):

/* Go back to the top directory. */
DBSetDir (dbfile, "..");

82

Ghost zones

Creating compatiblefiles I - Advanced topics

There are two changes to the code in the previous listing that allow it to write ghost zones.
First of all, the code calculatesthe size of azoneinthecx, cy, cz variablesand then
uses those sizes along with the location of the domain within the model to determine
which domain surfaces will receive a layer of ghost zones. The layer of ghost zonesis
added by altering the start and end locations of the coordinate arrays as well as
incrementing the number of zones and nodesin the dimensions that will have added ghost
zones. The knowledge of which surfaces get alayer of ghost zones is recorded in the

| o_offset andhi _of f set arrays. By settingl o_of f set [0] to 1, Silo knowsthat
thefirst layer of zonesin the X dimension will all be ghost zones. Similarly, by setting

hi gh_of f set [0] to 1, Silo knowsthat the last layer of zonesin the X dimension are
ghost zones. Thel o_of f set and hi _of f set arrays are associated with the mesh by
adding them to the option list that is passed to the DBPut Quadnesh function. The
example program fghostzonesinfile.f demonstrates how to add ghost zones to afile using
Silo’s Fortran interface.

50 Materials

Many simulations use materials to define the composition of regions so the response of the
materials can be taken into account during the calculation. Materials are represented as a
list of integers with associated material names such as: “steel”. Each zone in the mesh gets
one or more material numbers to indicate its composition. When a zone has asingle
material number, it issaid to be a“clean zone”. When there is more than one material
number in azone, it is said to be a“ mixed zone”. When zones are mixed, they have alist
of material numbersand alist of volume fractions (floating point numbers that sum to one)
that indicate how much of each material is contained in azone. Vislt provides the
FilledBoundary and Boundary plots for plotting materials and Vislt provides the Subset
window so you can selectively turn off certain materials.

Air

Membrane

Water

Figure 3-14: A mesh with both clean and mixed material zones

Materials 83

Creating compatiblefiles |l - Advanced topics

Materia numbers

Zone numbers

Figure 3-15: Mixed material example

zone 1

zone 10

matlist The matlist array contains the material
number for clean zones or an index into
3 -9 -11 -14 the mix arrays for mixed zones.
l Assuming array indices begin at 1, amix
array index is stored asthe negative value
3 -5 '7| 1 of the desired mix array index. The mix
arrays are 4 paralel arraysthat contain
the material numbers, volume fractions,
3 -1 -3 1 zone numbers, and number of materials
for each mixed zone.
‘ mix_zone mix_mat mix_vf mix_next
1: 1 1. 2 1: 0.75 1. 2
2: 1 2: 3 2: 0.25 2: 0
—P3. 2> 3 2 3: 0.1875 3 4
4. 2 4. 1 4. 0.8125 4. 0
——P|5: 5 5 2 5: 0.625 5 6
6. 5 6. 3 6: 0.375 6: O
‘——Pp| 7. 6 7.2 7. 0.4375 7. 8
8. 6 8 1 8: 0.5625 8 0
—>9: 9 9 2 9: 03 9: 10
10: 9 10: 3 10: 0.7 10: O
————— P 11: 10 11: 1 11: 0.2 11: 12
12: 10 12: 2 12: 0.4 12: 13
13: 10 13: 3 13: 04 13: O
Pl 14: 12 14:. 2 14: 0.45 14: 15
15: 11 15: 1 15: 0.55 15: O

Materials

Creating compatiblefiles I - Advanced topics

The plot of the materia object shown in Figure 3-14 and Figure 3-15 contains three
materials. “Water” (1), “Membrane” (2), and “Air” (3). Materialsuseamat | i st array to
indicate which zone are clean and which are mixed. The matlist array is a zone-centered
array of integers that contain the material numbers for the materialsin the zone. If azone
has only one material thenthenat | i st array entry for that zone will contain the
material number of the material that fills the zone. If a zone contains more than one
material thenthemat | i st array entry for that zone will contain an index into the mixed
material arrays. Indicesinto the mixed material arrays are equal to the negative value of
the desired mixed material array entry. When creating your mixed material arrays, assume
that array indices for the mixed material arrays begin at 1. When you begin assigning
material information into the mixed material arrays, use one array index per materia inthe
mixed material zone. The index that you use for the beginning index for the next mixed
material zoneisthe current index minusthe number of materialsin the current zone. Study
themat | i st array in Figure 3-15. The first mixed material zoneiszone 1 and sinceitis
mixed, instead of containing a material number, the matlist array for zone 1 contains the
starting index into the mixed material arrays, or -1. If you negate the -1, you arrive at index
1, which isthe starting index for zone 1 in the mixed material arrays. Since zone 1 will
contain two materials, we use indices 1 and 2 in the mixed material arraysto store
information for zone 1. The next available array for other zones wanting to add mixed
materials to the mixed material arraysis element 3. Thus, when zone 2, which isalso a
mixed zone, needs to have itsinformation added to the mixed material arrays, you store -3
into the matlist array to indicate that zone 2's values begin at zone 3 in the mixed material
arrays.

The mixed material arraysare aset of 4 parallel arrays. m x_zone, m x_mat , m x_vf,
and m x_next . All of the arrays have the number of elements but that number varies
depending on how many mixed zones there are in the material object. Them x_zone
array contains the index of the zone that owns the material information for the current
array element. That is, if you examine element 14 inthem x_zone array, you will know
that element 14 in all of the mixed material arrays contain information about zone 11.

Them x_mat array contains the material numbers of the materials that occupy a zone.
Material numbers correspond to the names of materials (e.g. 1 = Water) and should begin
at 1 and increment from there. The range of material numbers used may contain gaps
without causing any problemsin Vislt. However, if you create databases that have many
domainsthat vary over time, you'll want to make sure that each domain has the same list
of materials at every time step. It is not necessary to use a material number in the

mat | i st array or in the mixed material arraysin order to includeit in amaterial object.
Look at element 11 in the mix_mat array in Figure 3-15. Element 11 contains material 1,
element 12 contains materia 2, and element 13 contains materia 3. Since those three
material numbers are supposed to all be present in zone 10, they are all added to the

m X_mat array. Thesamearray elementsinthem x_vf array record the amount of each
material in zone 10. Thevaluesinthem x_vf array for zone 10 are: 0.2, 0.4, 0.4 and
those numbers mean that 20% of zone 10 isfilled with material 1, 40% isfilled with
material 2, and 40% isfilled with material 3. Note that all of the numbersfor azonein the
m x_vf array must sumto 1., or 100%.

Materials 85

Creating compatiblefiles |l - Advanced topics

Them x_next array contains indicesto the next element in the mixed material arrays
that contains values for the mixed material zone under consideration. Them x_next
array alowsyou to construct alinked-list of material numbersfor a zone within the mixed
material arrays. This means that the information for one zone's mixed materials could be
scattered through the mixed material arrays but in practice the mixed material information
for one zone is usually contiguous within the mixed material arrays. Them x_next
array contains the next index to use within the mixed material arrays or it contains azero
to indicate that no more information for the zone is available.

To write materialsto a Silo file, you use the DBPut Mat er i al function. The

DBPut Mat er i al functioniscoveredinthe Slo User’s Guide but it isworth noting here
that it can be called to write either mixed materials or clean materials. The examples so far
have illustrated the more complex case of writing out mixed materials. You can pass the
mat | i st array and the mixed material arraysto the DBPut Mat eri al functionor, in
the case of writing clean materials, you can passonly themat | i st array and NULL for
all of the mixed material arrays. Note that when you write clean materials, your mat | i st
array will contain only the numbers of valid materials. That is, thermat | i st array does
not contain any negative mixed material array indices when you write out clean material
objects.

Listing 3-16: mixedmaterials.c: C-Language example for writing mixed materials using Silo.

/* Material arrays */
int nmats = 2, ndins[2];
int matnos[] = {1, 2, 3};
char *matnanmes[] = {"Water", "Menbrane", "Air"};
int matlist[] = {
3, -1, -3, 1,
3, -5, -7, 1,
3, -9, -11, -14
b
float m x_vf[] {
0. 75, 0. 25, 0. 1875, 0. 8125,
0. 625, 0. 375, 0. 4375, 0. 56250,
0.3,0.7, 0.2,0.4,0.4, 0. 45, 0.55

b

int mx_zone[]
1,1, 2,2,
5,5, 6,86,
9,9, 10,10,10, 11,11

1
—~

o
HNN§
- - =+
N R

int mx_next[] = {
2,0, 4,0,
6,0, 8,0,
10,0, 12,13,0, 15,0

86

Materials

Creating compatiblefiles I - Advanced topics

}s

int mxlen = 15;

/* Wite out the material */

ndi ns[0] = NX-1;

ndi ns[1] = NY-1;

optlist = DBVakeOptlist(1);

DBAddOpt i on(optlist, DBOPT_MATNAMES, matnames);

DBPut Vat eri al (dbfile, "mat", "quadnesh", nmats, matnos, matlist,
ndi ns, ndinms, mx_next, mx_mat, mx_zone, mx_vf, mxlen,
DB_FLOAT, optlist);

DBFreeOpt | i st (optlist);

Listing 3-17: fmixedmaterials.f: Fortran language example for writing mixed materials using Silo.

subroutine wite_m xedmaterial (dbfile)

inmplicit none

i nteger dbfile

i nclude "silo.inc"

i nteger NX, NY

paranmeter (NX = 5)

paraneter (NY = 4)

integer err, ierr, optlist, ndins, nmats, mxlen
integer ndins(2) /NX-1, NY-1/

i nteger matnos(3) /1, 2,3/

integer matlist(12) /3, -1, -3, 1,
31 -51 -71 11
3, -9, -11, -14/

real mx_vf(15) /0.75,0.25, 0. 1875, 0. 8125,
0. 625, 0. 375, 0. 4375, 0. 56250,
0.3,0.7, 0.2,0.4,0.4, 0. 45, 0. 55/

integer m x_zone(15) /1,1, 2,2,
55, 6,6,
9,9, 10,10,10, 11,11/

integer mx _mat(15) /2,3, 2,1,
2,3, 2,1,
2,3, 1,2,3, 2,1/

i nteger m x_next(15) /2,0, 4,0,
6,0, 8,0,
10,0, 12,13,0, 15,0/

ndi s 2
nmat s 3
m xlen = 15
c Wite out the materi al
err = dbputmat (dbfile, "mat", 3, "quadnesh", 8, nmats, matnos,
matlist, nmdinms, ndinms, mx_next, mx_mat, mXx_zone, m x_vf,
m x| en, DB _FLOAT, DB F77NULL, ierr)

Materials 87

Creating compatiblefiles |l - Advanced topics

end

88 Materials

Chapter 4 Creating a database reader

plug-in

1.0

2.0

Overview

This chapter shows how to extend Vislt by writing a new database reader plug-in so you
can use Vislt to access data files that you have already generated. Writing a database
reader plug-in has several advantages over other approaches to importing datainto Vislt
such as writing a conversion program. First of al, if Vislt can natively read your file
format then thereis no need to convert files and consume extra disk space. Converting files
may not even be possible if the data files are prohibitively large. Secondly, plug-ins offer
the advantage of not having to alter a complex simulation code to write out data that Vislt
can read. New plug-ins are free to read the simulation code’s native file format. While
many approaches to importing datainto Vislt require new, specialized, code, when you
write a database plug-in, the code that you write is external to your ssmulation and it is not
a convertor that you have to maintain. Thereis no doubt that there is some maintenance
involved in writing a database reader plug-in for Vislt but there is always the option of
contributing your plug-in back into the Vislt source code tree where the code maintenance
burden is shared among the devel oper community.

This chapter first reviews the Vislt architecture and describes where plug-insfit into that
scheme. After plug-ins are discussed, the steps that you must follow in order to create a
plug-in are outlined. After covering the basics, you can dive into the section that covers
how to implement your plug-in. Finally, once you have a working plug-in, you can add
advanced features.

Structure of Vislt

Visltisaparallel, distributed application that consists of four component processes that
work in tandem to produce your visualizations. The two components that you may already

Overview Getting Data into Vislt Manual 89

Creating a database reader plugin

be familiar with are the client and the viewer. Vislt has GUI, Python interface, and Java
clients that control the visualization operations performed by the viewer, which isthe
central state repository and graphics rendering component. The other components, which
are not immediately visible, are the database server and the compute engine. The database
server (sometimes called the meta-data server) is responsible for browsing the file system
and letting you know which files can be opened. Once you decide on afile to open, the
database server attempts to open that file, loading an appropriate database reader plug-in
to do so. Once the database server has opened afile, it sends file metadata such as the list
of available variables to the client and the viewer. The compute engine comesinto play
when you want to create a plot to process your datainto aform that can be rendered on the
screen. The compute engine, like the database server, loads a plug-in to read adatafile and
does the actual work of reading the problem-sized datafrom the file and trandating it into
Visualization Toolkit (VTK) objects that Vislt can process. Once the data has been read, it
is fed through the visualization pipeline and returned to the viewer component where it
can be displayed.

GUI Viewer

P
P — e — = PENE | MIEEE. EE R

L ocal computer

H B BN BN BN BN BN BN AN BN BN BN BN (BN BN BN B = . Il I I I NN
Remote computer metadata metadata processed data
Database server
c Parallel Compute Engine
Data

Figure 4-1: Vislt's architecture

90

Structure of Vislt

Creating a database reader plugin

21 plug-ins

Vislt supportsthree types of plug-ins: plot plug-ins, operator plug-ins, and database reader
plug-ins. This chapter explores database reader plug-ins as a method of importing data
from new file formatsinto Vislt. A database reader plug-in is made of three shared
libraries, which are dynamically loaded by the appropriate Vislt components when data
from afile must be read. The Vislt componentsinvolved in reading data from afile are the
database server and the compute engine. Each database reader plug-in has a database
server component, a compute engine component, and an independent component, for a
total of three shared libraries(I i bM | i bE, | i bl).

The independent plug-in component, or | i bl plug-in component, is a very lightweight
shared library containing little more than the name and version of a plug-in as well asthe
file extensions that should be associated with it. When the database server and compute
engineinitialize at runtime, one of their first actions isto scan Vislt's plug-in directories
for availablel i bl plug-insand then load al of thel i bl plug-insto assemble an internal
list of known plug-ins along with the table of file extensions for each file.

When Vislt needs to open afile, the filenameisfirst passed to the database server, which
tries to extract afile extension from the end of the filename so an appropriate plug-in can
be selected from the list of available plug-ins. Once one or more matches are made, the
database factory object in the database server loadsthe | i bMplug-in component for the
first plug-in in the list of matching plug-ins. Thel i bMplug-in component is the piece of
the plug-in used by the database server and it is used to read the metadata from thefilein
guestion. If the plug-in cannot open the file then it should throw an exception to make the
database factory attempt to open the file using the next matching plug-in. If there are no
plug-ins that match the file's file extension then a default database plug-in is used. If that
plug-in cannot open thefile then Vislt issues an error message. Oncethel i bMplug-in has
read the metadata from the file, that information is sent to the Vislt clients where it can be
used to populate variable menus, etc.

When you add aplot in Vislt and click the Draw button, the first step that the compute
engine takes to process your request is to open the file that contains the data. The
procedure for opening the file that contains the data in the compute engine is the same as
that for the database server. In fact, the same database factory code is used internally.
However, the database factory in the compute engine loadsthel i bE plug-in component.
Thel i bEand | i bMplug-in components are essentially the same except that, when
possible, database server plug-in components do lesswork. Boththel i bEand | i bM
plug-in components contain code to read a file's metadata and both contain code to read
variables and create meshes. The difference between the two plug-in typesisthat the code
to read the variables and create meshesis only called from thel i bE plug-in component.

Structure of Vislt 91

Creating a database reader plugin

3.0

Starting your plug-in

Now that you know the basics of how Vislt uses database reader plug-insin order to read
different types of files, it istimeto begin your plug-in. This section explains the different
interfaces available for coding your plug-in and also covers the stepsinvolved to create
your plug-in code skeleton and run it for the first time.

3.1 Pickingadatabasereader plug-in interface

Database reader plug-ins have 4 possible interfaces, which affect how files are mapped to
plug-in file format objects. The 4 possible interfaces are shown in the table below:

SD MD

ST STSD - Singletime state | STMD - Singletime state per
per file and it contains file but each file contains
just 1 domain. multiple domains.

MT | MTSD - Multipletime MTMD - Multiple time

states per file and each states per file and each file
file containsjust 1 contains multiple domains.
domain

In order to pick which plug-in interface is most appropriate for your particular file format,
you must consider how your file format treats time and domains. If your file format
contains multiple time states in each file then you have an MT file format; otherwise you
have an ST file format. If your file format comes from a parallel simulation then you will
often have some type of domain decomposition, which breaks up the entire simulation into
smaller pieces called domains that are divided among processors. If your simulation has
domains and the domains are written to a single file then you have an MD file format;
otherwise, if your simulation processors wrote out their own files then you have an SD file
format. When you consider both how your file format deals with time and how it deals
with domains, you should be able to select which plug-in interface you will need when
you write your database reader plug-in.

3.2 Using XMLEdit

Once you pick which database interface you will use to write your database plug-in, the
next step isto use Vislt’'s XMLEdit tool to get started with some interface definitions.
XMLEditisagraphical application that lets you create an XML file that describes some of
the basic attributes for your database reader plug-in. The XML file contains information
such asthe name of the plug-in, itsversion, which interfaceis used, the plug-in’slist of file
extensions, and any additional libraries or source code files that need to be included in the
plug-inin order to build it.

92

Sarting your plugin

Creating a database reader plugin

To get started with building your plug-in, the first step isto create a source code directory
to contain all of the files that will be created to generate your plug-in. It is best that the
directory name be the name of your file format or the name of your simulation. Once you
have created a directory for your plug-in files, you can run Vislt's XMLEdit program. To
start XMLEdit on UNIX systems where Vislt isinstalled, open a command window and
typexml edi t . On Windows systems, XMLEdit should be available in the Start menu
under Vislt's plug-in development options.

- Tals o EMRLST wmsadaml
[
% g | Chlabe | Ao | Grosw | Fabiy | Fomoses | Cossmem | incheden | Cosde ||
g L
Carear=ud Plosr o Srieciey
(L I -I B Pl o sriivimdl by diacit
TR I .lHll| R |
F |
| 5 | r o] |
= F r " =
[=
|
r
-
-
F

Figure 4-2: XMLEdit plug-in tab

Once XMLEdit is active you can see that it has a number of tabs that are devoted to
various aspects of plug-in development. Most of the tabs are used for devel oping plot and
operator plug-ins only so this section will focus on the actions that you need to take to
create your database reader plug-in. First of al, you must type the name of your plug-in
into the Name text field. The name should match the name of the source code directory
that you created - be sure that you pick a name that can be used inside of C++ class hames
since the name is used to help generate the plug-in code skeleton that will form the basis
of your database reader plug-in. Next, type in alabel into the Label text field. The label
for adatabase plug-in can contain alonger identifier that will be displayed when Vislt uses
your plug-in to read files. The label may contain spaces and punctuation. Next, enter the
version of your plug-in into the Version text field. The version for initial development
should be: 1.0. Now, choose Database from the Plugin type combo box to tell XMLEdit
that you want to build a database reader plug-in. Once you choose Database for your plug-

Sarting your plugin 93

Creating a database reader plugin

in type, some additional options will become enabled. You can ignore these options for

now since they contain reasonable default values.

i 1% KT, s
[k ——— - —— - - _— - - - - - - -
ﬂwp|mu|u-.-||:m|r.u.|;' | c | | Cots ||
i Plagen Ao sy
Tl Plasgr aBiriecinsy
(L II:J||3-,|.P -I: R Pl 5 ssuiiee 2y it
TE) |mauTC DN Labal | MUTCDF ks L
I~k |
P F T rmn ru = r
A r r F ik -
1 i i Pl d e
v nd b By r j
Elafaull by ryrem gl |

[Foie s pasierrs, are siend By delantt

17 Foim il mpres o mivske dessboy Lol @ namghe bim]
7 File Resst i whei myie ik

7 Fi st jrpinbn . il i 1 d g 8 i il

Figure 4-3: XMLEdit plug-in tab with plug-in name and type selected

The next step in creating your database plug-in using XMLEdit is to set the database type
to STSD, STMD, MTSD, MTMD by selecting one of those options from the Database
type combo box. Note that it is possible to instead choose to create afully custom

AL I KM vl
[
“'-rrl.f.l-i-l-lih.-:-.l.lr-n-LIr.-H:h.l:.’ : i; | IE-&.H
1 Pl I~ damima wrdy
Carepsd Pl aBriese
[- m B Pl f1 sviitios o by st
TE) |maTC D bl | MITCOF ks L
I~ |
o r F feim Fu = F
F r F F s o
1 i i PRy dmndeamn
[T PR r'|'|"-:i Lot Pt s W Leigies eVl oY j

Elafaull by fprem gl | 1 rot

™ File e gy dom 1) by delioid

I Foim frmat mpres 3 mivske drboy Lol @ e bim |
7 Pl Rt i whei myie it

7 Fi st ropinbn b il it 1 d g w8 i il

Figure 4-4: XMLEdit plug-in tab with database type and extensions

selected

94

Sarting your plugin

Creating a database reader plugin

database type but do not choose that option since most formats do not need that level of
customizeability. Once you have selected a database type for your plug-in, typein the list
of file formats that you want to associate with your plug-in. You can enter as many space-
delimited file extensions as you want.

Theinformation that you entered is the minimum amount of information required to create
your database reader plug-in. Save your XMLEdit session to an XML file by selecting
Save from the File menu. Be sure to use the same name as you used for the directory
name that will contain your plug-in files and also be sure to save your XML file to that
directory. At this point, you can skip ahead to generating your plug-in code skeleton or
you can continue adding options to your XML file.

321 CMakeoptions

Vislt uses cmake for its build system and for the build systems of its plugins. XM LEdit
contains controls on its CM ake tab that allow you to add options to your XML file that
will influence how your plug-in code is built when you go to compile it. For example, the
CMake tab includes options that alow you to specify compiler options such as
CXXFLAGS, LDFLAGS, and LIBS.

Adding options to these fields can be particularly useful if your plug-in uses an external
library such as NETCDF or HDF5. If you are using alibrary that Vislt provides
(NETCDF, HDF5, CGNS, Silo, etc.) then you can use special predefined cmake variables
that Vislt's build defines to locate those libraries. For example, you could use
${NETCDF_INCLUDE_DIR}, ${NETCDF_LIBRARY_DIR}, ${NETCDF LIB} to
reference the include directory, library directory, and library name for the NETCDF
library. Just substitute another capitalized library name for NETCDF to use variables for
other 1/O libraries. It is better to use these cmake variables for libraries that Vislt provides
to ensure that your plugin islinked against the right libraries.

If you are using alibrary that Vislt does not support, you can add the include file and
library file locations to ensure that the compiler will know where to look for your external
library when your plug-in is built. Be sure to use -1/path/to/include in the CXXFLAGS
when you want to add include directories for your plugin. Use -L/path/to/lib in the
LDFLAGS when you want to add link directories for your plugin. Finally, add the name
of thelibrary (e.g. netcdf instead of -Inetcdf) inthe LIBS when you need to link against
additional libraries.

Sarting your plugin 95

Creating a database reader plugin

You can also add extrafilesto thel i bEand | i bMplug-ins by adding alist of filesto the
Engine files and MDServer files text fields, respectively. If you change any of these
options, shown in Figure 4-5, be sure to save your XML file before quitting XMLEdit.

. Tals [T rp———
e

. e prey - — | © | | Coate |

CHNFLAGS | HME T _CLADE_De

LOFLAGS E"I"-I TCDE_ LSRR O |

L [swercoe_um|
™ GLA Pl 1

™ GIN Las

™ GLA g ey

T Smipeg Féam

™ Viarems ey

I Viaws Wedgar Ddas

™ eiaras Filn

™ walriarmr Ly
™ g Fiat
I Frges bibs st ||

|
|
|
|
I Vhewens Lty I
|
|
|
I

I G Lis lpan1]
I Plogpn han cods swsclbs m e [rges
I Ploge sy vombe nprivks bn Por Bhrromr (Dalubaion Pger smiph

Figure 4-5: XMLEdit CMake tab with compiler options and additional
files specified.

3.3 Generating a plug-in code skeleton

Once you save your work from XMLEdit, you will find an XML file containing the
options that you provided in the directory where you store your plug-in files. Vislt
provides more XML toolsto generate the necessary code skeleton for your plug-in. The
important tools when building a database plug-in are: xnmi 2cmake, xm 2i nf o,

xm 2pl ugi n. Thexm 2pl ugi n program is actually a script that automates calling the
required xm 2* programs. In order to generate your plug-in code skeleton, open a
command window, go to the directory containing your XML file, and run xm 2pl ugi n.
On UNIX systems, the command that you will runis:

xm 2pl ugi n -cl obber FILE. xn

96 Sarting your plugin

Creating a database reader plugin

Be sure to replace FILE.xml with the name of your own XML file. Once you run the
xm 2pl ugi n program, if you look in your directory, you will see several new files.

C] Shell - Konsade 3=

dagobah 1005% l=

[Makefiles METCDFPluginlnfo.C
|NETCDF . xml NETCDFFPluginInfo.h

| HETCDFCommonPluginlnfo. C avtMETCOFFileFormat.C
| HETCDFEnginePluginInfa.C avENETCDFF1leFormat.h
| HETCOFHDServerPluginlnfo.C

| dagobah 1006%

| D) e

Figure 4-6: Files generated by xmI2plugin

For database reader plug-ins, there are essentially three classes of filesthat xm 2pl ugi n
creates. First of all, xm 2pl ugi n creates the plug-in code skeleton, which includes the
plug-in entry points that are used to load the plug-in dynamically at runtime. These files
have “ Info” in their name and they are generated by the xm 2i nf o program. If you
change the name, version, or file extensions that your plug-in uses then you should re-run
xm 2i nf o instead of running xm 2pl ugi n. The next set of filesarethe AVT file
format source and header files. The AVT file format source code files are C++ source code
filesthat you will complete using new codeto read your fileformat. Finaly, xm 2crmake,
created a CmakeL.ists.txt file that cmake can use to generate a build system for your plug-
in. If you run “cmake .” at the command prompt and you are on a UNIX system such as
Linux or MacOS X, cmake will generate a Makefile for your plug-in. In that case, all you
have to do in order to build your plug-inistype: make at the command prompt.

3.4 Building your plug-in

So far, we have created an XML file using the XMLEdit program and then used the XML
file with Vislt's XML tools to generate plug-in source code. The static portions of the
generated source code is complete but there are still some pieces that you need to write
yourself in order to make Vislt read your datafiles. The automatically generated files that
are called avtXXXXFileFormat.C and avtXXXXFileFormat.h, where XXX X is the name of
your plug-in, areincomplete. Thesetwo AVT files contain a derived class of one of the
STSD, STMD, MTSD, MTMD file format classes that Vislt provides for reading different
filetypes. Your jobistofill in the missing codein the methodsfor the AVT classes so they
can read datafrom your file format and trandate that datainto VTK objects. By default,
the AVT files contain some messages in the source code like “ YOU MUST IMPLEMENT

Sarting your plugin 97

Creating a database reader plugin

THIS’ , which are meant to prevent the source code from compiling and to call attention to
areas of the plug-in that you need to implement (See Figure 4-7).

& aviNETCDFFileFormat.C - fhome/whitlocb/visitdistyNETCDF/
File Edit Search Preferences Shell Macro Windows Help

fhomedwhitiochs/visitdistNETCDFfavtNETCDFFileFormat.C 9295 bytes
// R R] A

A5 Hethod: aviNETCDFFIleFormat: :GetHesh
£

S Purpose:

I Gets the mesh associzted with this Ffile. The mesi is returned as 2
I derived type of vikDataSet (ie vikRectilinesrGrid, vikStructuredGrid,
£ vitkinstructurederid, etc).

A Arguments:
I mesfinane The name of the mesh of interest. This can be ignored If
I there Is only one mesh.

S Programmer: whitloch -- generated by xmliavt
S Creation: Fri Jun 23 16:46:12 PST 2006 J

e]

vtkDataSet *
avtNETCDFFileFormat: : GetMesh {const char *meshname)

TOU MUST IMPLEMENT THIS

=l 1

Figure 4-7: Example of a “YOU MUST IMPLEMENT THIS"” message

Thefirst step in building a plug-in is to make sure that the automatically generated source
code compiles. Open the AVT files and look for instances of the * YOU MUST
IMPLEMENT THIS’ message and, when you find them, write down a note of where they
appear. Comment out each of the messages in the C++ source code and add “r et ur n

0; " statements (See Figure 4-8). By commenting out the offending messages, the
automatically generated source code will compile when you attempt to compile the plug-
in. Youwill also have alist of some of the plug-in methods that you will have to write later
when you really begin developing your plug-in.

Once you have changed the AVT files so there are no stray messages about implementing
aplug-in feature, go back to your command terminal and type “cnmake -

DCMAKE_BUI LD TYPE: STRI NG=Debug” so cmake will generate a build system for
your plug-in. The generated build system is most commonly a Makefile, allowing you to
use the make command for your system (commonly make or gmake). The make
command takes the automatically generated M akefile that was generated by cnake and
starts building your plug-in against the installed version of Vislt. If you encounter
compilation errors, such as syntax errors, then you most likely need to make further
changesto your AVT files before trying to build your plug-in. A good C++ language
reference can help you understand the types of errors that may be printed to your
command window in the event that you have not successfully changed the AVT files. If
your source code seems to compile but fails due to missing libraries such as NETCDF or
HDF5 then you can edit your XML file so it points to the right library installation
locations. Note that if you edit your XML file, you will need to regenerate the
CMakelLists.txt fileusing xm 2crmake. It isalso agood ideathat you remove the

98 Sarting your plugin

Creating a database reader plugin

CMakeCache.txt file before rerunning cmake if you have changed the path to any libraries
inyour XML file.

& aviNETCDFFileFormat.C - fhome/whitlocb/visitdistyNETCDF/
File Edit Search Preferences Shell Macro Windows Help

fhomedwhitiochs/visitdistNETCDFfavtNETCDFFileFormat.C line 199, col 13, 3311 bytes

// EEEEEEEEEEEEEEEEEEE EE E E R R] A
A5 Hethod: aviNETCDFFIleFormat: :GetHesh

S Purpose:

I Gets the mesh associzted with this Ffile. The mesi is returned as 2
I derived type of vikDataSet (ie vikRectilinesrGrid, vikStructuredGrid,
£ vitkinstructurederid, etc).

A Arguments:
I mesfinane The name of the mesh of interest. This can be ignored If
I there Is only one mesh.

S Programmer: whitloch -- generated by xmliavt
S Creation: Fri Jun 23 16:46:12 PST 2006 J

e]

vtkDataSet *
avtNETCDFFileFormat: : GetMesh {const char *meshname)

SAYOU WUST THCLEMENT THIS
retwrn 0;
} i
=l 1

Figure 4-8: Example of corrections made to a “YOU MUST
IMPLEMENT THIS” message needed to make the source
code compile

Once your plug-in isbuilt, it will be stored in a platform-specific subdirectory of the

. Vi si t directory inyour homedirectory (~/ . vi si t).Ifyoutype:find ~/.visit
-nanme “*.so0” intoyour command window, you will be ableto locatethel i bE,
['ibl,and!| i bMfilesthat make up your compiled plug-in (see Figure 4-9). If you
develop for MacOS X, you should substitute“ *. dyl i b” for“*. so0” inthe previous
command because shared libraries on MacOS X havea“ . dyl i b” file extension instead
of a“. so” fileextension. Note that when a parallel compute engine is availablein the
installed version of Vislt, you will get two | i bE plug-ins; onewitha_ser suffix and one
witha_par suffix. Thel i bE filesthat have a_ser suffix are loaded by the seria
compute engineand the _par | i bEfileisloaded by the parallel compute engine and
may contain parallel function calls, such as calsto the MPI library.

When Vislt's database server and compute engine execute, they look inyour ~/ . vi si t
directory for available plug-ins and load any that are available. Thismeansthat evenif you
build plug-ins against the installed version of Vislt, it will still be able to find your private
plug-ins.

It is recommended that while you develop your plug-ins, you only install them in your

~/ . vi sit directory so other Vislt users will not be affected. However, if you develop
your plug-in on MacOS X, you will have to make sure that your plug-ins are installed
publicly so that they can be loaded at runtime. You can also chooseto install your plug-ins
publicly once you have completed development. To install plug-ins publicly, first remove
the files that were installed to your ~/ . vi si t directory by typing the make cl ean
command in your command window. Next, re-run the xml 2cnmake program like this:
xm 2cmeke -public -cl obber FILE. xm .Addingthe- publ i c argument on

Sarting your plugin 99

Creating a database reader plugin

the command line causes make to install your plug-in files publicly so all Vislt users can

access them. Don’t forget to rerun cmake after running xm 2cmake.

[Shell - Konzobs <=

foviEll -pame " C.go”
Flimax-intel /plugins/databases/libINETCDFDatabase. so
] f 11bMNETCDFDataba
Flimnx-intel /plugins/databas 1ibENETCDFDatab
1t lapax-antel fplugins/databases/ 11 bENETCDFDatab

Figure 4-9: Files are created in the .visit directory when a plug-in is built.

3.5 Callingyour plug-in for thefirst time

<

Fllo = healnos) - hiosewhakee b oaa NET COF sk cdl
EEREEREE
Dagnbase: Momawhiliioebdnie RET O arele oo
Sirmisiad ko : Mo

Flia foremi: HETCOF 1.0 >

MsanDain ks HOT mpopulnled on S50 ¢hanges
usaCalchAllMagh: 0

Fosmal canmal de B own domain decomposhian
Thes tampomd sX1onds ane nol ol

AN Times ane *“NOT™* Accumin

Timoa: Aro ldeniical o cyches

AN Cycles pm “HOT* ACcumie

Cyelas: 0

Poat Dizming

Figure 4-10: File Information window confirming use of your plug-in.

Once you have completed building your plug-in for the first time, all that youneedtodois
run Vislt and try to open one of your files. When you open one of your files, the database
server should match the file extension of the file that you tried to open with thelist of file
extensions that your plug-in accepts, causing your plug-in to be loaded and used for
opening the file. You can verify that Vislt used your plug-in by opening the File

100

Sarting your plugin

Creating a database reader plugin

4.0

Information window (see Figure 4-10) in the Vislt GUI and looking for the name of your
plug-in in the listed information.

Note that at this stage, the database server should be properly loading your database reader
plug-in but since no code to actually read your files has yet been added to the AVT source
code files, no plottable meshes or variables will be available.

I mplementing your plug-in

Now that you have built aworking plug-in framework, you are ready to begin adding code
to your plug-in that will make it capable of opening your file format, reading data, and
trandating that datainto VTK objects. This section exploresthe details of writing the AVT
code for your database reader plug-in, providing necessary background and then diving
into specific topics such as how to return data for a particular mesh type. Before starting,
remember that building a plug-in is an incremental process and you should proceed in
small steps, saving your work, building, and testing your plug-in each step of the way.

4.1 Required plug-in methods

Most of the code in a Vislt database plug-in is automatically generated and, for the most
part, the only code that you need to modify isthe AVT code. The AVT code contains a
class definition and implementation for a derived type of the STSD, STMD, MTSD, or
MTMD file format classes and your job as a plug-in developer isto write the required
methods for your derived file format class so that Vislt can read your file. There are many
methods in the file format class interface that you can override to make your plug-in
perform specialized operations. The only methods that you absolutely must implement are

Implementing your plugin 101

Creating a database reader plugin

the Popul at eDat abaseMet aDat a, Get Mesh, Get Var, and Get Vect or Var
methods. The purpose of each of these plug-in methodsis listed in the following table.

Method Purpose
Popul at eDat a- Vislt callsthe Popul at eDat abaseMet aDat a
baseMet aDat a method when file metadata is needed. File metadata

isreturned in a pass-by-reference avt Dat a-
baseMet aDat a object. File metadata consists of
the list of names of meshes, scalar variables, vector
variables, tensor variables, label variables, array
variables, expressions, cycles, and times contained in
thefile. These lists of variables and meshes let Vislt
know the names of the objects that can be plotted
from your file. The metadata is used primarily to
populate the plot menusin the GUI and viewer com-
ponents. The Popul at eDat abaseMet aDat a
method is called by both thel i bMand | i bE plug-
ins.

CGet Mesh Vislt callsthe Get Mesh method inal i bE plug-in
when it needsto plot amesh. This method isthefirst
method to return “problem-sized” data, meaning that
the mesh data can be aslarge asthe datain your file.
The Get Mesh method must return a mesh object in
the form of one of the VTK dataset objects

(vt kRectilinearGid, vtkStruc-
turedGid, vtkUnstructuredGid,

vt kPol yDat a)

CGet Var Vislt callsthe Get Var method inal i bE plug-in
when it needs to read a scalar variable. Like the

Get Mesh method, this method returns * problem-
sized” data. Get Var reads data values from the file
format, possibly performing calculations to alter the
data, and stores the datainto a derived type vt k-
Dat aAr r ay object such asvt kFl oat Array or
vt kDoubl eAr r ay. If your file format does not
need to return scalar data then you can leave the
“return 0;” implementation that you added in
order to get your plug-in to build.

102 Implementing your plugin

Creating a database reader plugin

Method Purpose

Cet Vect or Var Vislt callsthe Get Vect or Var methodinal i bE
plug-in when it needs to read a vector or tensor vari-
able. Get Vect or Var performs the same function
asGet Var but returnsvt kFl oat Array or vt k-
Doubl eAr r ay objects that have more than one
value per tuple. A tupleisthe equivalent of avalue
associated with a zone or node but it can store more
than one value. If your file format does not need to
return scalar data then you can leavethe “r et ur n
0;” implementation that you added in order to get
your plug-in to build.

4.2 Debugging your plug-in

Before beginning to write code for your plug-in, you should know afew techniques for
debugging your plug-in since debugging Vislt can be tricky because of its distributed
architecture.

421 Debugginglogs

The first method debugging in Vislt is by using Vislt's debug logs. When you run vi si t
on the command line, you can optionally add the - debug 5 argumentsto make Vislt
write out debugging logs. The number of debugging logs can be 1, 2, 3, 4, or 5, with
debugging log 5 being the most detailed. When Vislt's components are told to run with
debugging logs turned on, each component writes a set of debugging logs. For example,
the database server component will write A.mdserver.1.vlog,
A.mdserver.2.vlog,...,A.mdserver.5.vlog debugging logsif you pass - debug 5 onthe
Vislt command line. Subsequent runs of Vislt will prepend ‘B’ then *C’, and so on. If you
don’t want that behavior, you may add - cl obber vl ogs to Vislt's command line
arguments. Since you are writing a database reader plug-in, you will want to look at the
A.mdserver* .vlog and A.engine* .vlog files since those components load your | i bMand
I i bE plug-ins.

The debugging logs will contain information written to them by the debugging statements
in Vislt's source code. If you want to add debugging statements to your AV T code then
you can usethedebugl, debug2, debug3, debug4, or debug5 streams as shown in
the next code listing.

Listing 4-11: debugstream.C: C++-Language example for using debug streams.

/1 NOTE - This code inconplete and is for exanpl e purposes only.

/1 1nclude this header for debug streans.
#i ncl ude <DebugStream h>

Implementing your plugin 103

Creating a database reader plugin

vt kDat aSet *
avt XXXXFi | eFor mat : : Get Mesh(const char *neshnane)

{
/1 Wite nmessages to different |evels of the debug | ogs.
debugl << "H from avt XXXXFi | eFor mat : : Get Mesh” << endl ;
debug4 << "Many dat abase plug-ins prefer debug4"” << endl;
debug5 << "Lots of detail from avt XXXXFi | eFornat:: Get Mesh”

<< endl;

return O;

}

4.2.2 Dumping VTK objectsto disk

In addition to the - debug argument, Vislt also supportsa- dunp argument. The- dunp
argument tells Vislt's compute engine to write VTK files containing the datafor every
stage of the pipeline execution so you can view the changes to the data made by each AVT
filter. While this option is more useful when writing plots and operators, you can use it to
examine the data at the beginning of the pipeline since, at that stage, the data will contain
the VTK object that was created by your database reader plug-in.

When you run Vislt with the - dunp argument, many VTK fileswill be created since the
datais saved at every stage in the execution of Vislt's data processing pipeline. Each VTK
filename begins with a number indicating the order of the filter in the pipeline that saved
the data. Thelist of files created by using the - dunp argument is shown in Figure 4-12.

=M Temsiral — teah — BEu2H

Figure 4-12: Output of running with the -dump command line argument

104 Implementing your plugin

Creating a database reader plugin

4.3 Openingyour file

When Vislt recelves alist of filesto open, it tries to determine which plug-in should be
loaded to access the data in those files. The match is performed by comparing the file
extension of the files against the known file extensions or patterns for all database reader
plug-ins. Each plug-inin the list of matchesisloaded and Vislt creates instances of the
plug-in's AVT file format classes that are then used to access the datain the files. If the
plugin’sfile format classes can be successfully constructed then Vislt triesto get thefile's
metadata. It is very important that your file format’s constructor do as little work as
possible, and try at all coststo avoid opening the files. Remember, Vislt could be creating
along list of your file format objects and opening the file in the constructor will really
slow down the process of opening afile. It is better to instead add a boolean
initializedmembertoyourclassandanl niti al i ze method that readsthefileto
check its contents. Then overridethe Act i vat eTi nest ep method for your file format
classand call your | ni ti al i ze method from it. We make Initialize its own method so
we can cal it from other methods such as Get Mesh or Get Var just in case.

In the event that your Initialize method cannot open thefileif the fileis not the right type,
or if it contains errors, or if it cannot be accessed for some other reason, the constructor
must throw an | nval i dDBTypeExcept i on exception. When the

| nval i dDBTypeExcept i on exception isthrown, Vislt's database factory catches the
exception and then tries to open the file with the next matching plug-in. This procedure
continues until the file is opened by a suitable plug-in or the file cannot be opened at all.

Listing 4-13: invaliddbtype.C: C++-Language example for identifying a file.

/1 NOTE - This code inconplete and is for exanpl e purposes only.
#i ncl ude <l nval i dDBTypeExcepti on. h>

avt XXXXFi | eFor mat : : avt XXXXFi | eFor mat (const char *fil enane)
avt STSDFi | eFormat (fi | enane)

{
initialized = fal se;
}
/1 Cverride this nethod in your reader
voi d
avt XXXXFi | eFormat : : Acti vat eTi nest ep()
{
Initialize();
}
/1 Provide this nethod in your reader
voi d
avt XXXXFi | eFormat::Initialize())
{

if(linitialized)

Implementing your plugin 105

Creating a database reader plugin

bool okay = fal se;

/1 Open the file specified by the fil enane argument here using
/1 your file format API. See if the file has the right things in
/1 it. If so, set okay to true.

YOU MUST | MPLEMENT THI S

/1 1f your file format APl could not open the file then throw
/1 an exception.
if (!okay)
{
EXCEPTI ON1(I nval i dDBTypeExcepti on,
"The file could not be opened");

}

initialized = true;

If your database reader plug-in uses a unique file extension then you have the option of
deferring any file opens until later when metadatais required. Thisisthe preferred
approach because Vislt may create many instances of your file format class and doing less
work in the constructor makes opening files faster.

Once you decide whether your file format can defer opening afile or whether it must open
the file in the constructor, you can begin adding code to your AVT class. Since opening
files can be a costly operation, you might want to open afile and keep it open if you have a
random access file format. If you open afile in one method and want to keep the file open
so it is available to multiple plug-in methods, you will need to add a new class member to
your AVT classto contain the handle to your openfile. If your file format consists of
sequential text then you might consider reading the file once and keeping the datain
memory in aformat that you can conveniently trandlate into VTK objects. Both
approaches require the addition of a new class member - either a handleto thefile or a
pointer to data that was read from thefile.

4.4 Returning file metadata

Once your you have decided how your plug-in will manage access to thefile that it must
read, the next step in writing your database reader plug-in isto implement the

Popul at eDat abaseMet aDat a method. The Popul at eDat abaseMet aDat a
method is called by Vislt's database infrastructure when information about afile's meshes
and variables must be obtained. The Popul at eDat abaseMet aDat a method is
usually called only the first time that afile format’s metadata is being read, though some
time-varying formats can have time-varying metadata, which requires that

Popul at eDat abaseMet aDat a is called each time Vislt requests datafor a new time
state. However, most file formats call Popul at eDat abaseMet aDat a once.

106

Implementing your plugin

Creating a database reader plugin

The Popul at eDat abaseMet aDat a method arguments can vary, depending on
whether your file format is STSD, STMD, MTSD, or MTMD but in all casesthe first
argument isan avt Dat abaseMet aDat a object. Theavt Dat abaseMet aDat a
object isaclassthat is pervasively used in Vislt; it contains information about the files that
you plot such as the number of domains, times, meshes, and variables that the files can
provide. When you implement your plug-in’'s Popul at eDat abaseMet aDat a
method, you must populate the avt Dat abaseMet aDat a object with the list of meshes
and variables, etc. that you want Vislt to be able to plot. You can hard-code a fixed list of
meshes and variablesif your file format always contains the same entities or you can open
your file and provide a dynamic list of meshes and variables. This section covers how to
add meshes and various variable typesto the avt Dat abaseMet aDat a object so your
file format’s data will be exposed in Vislt. For a complete listing of the

avt Dat abaseMet aDat a object’s methods, see the avtDatabaseMetaData.h header
file. It isworth noting that the following code examples create metadata objects and
manually add them to the metadata object instead of using convenience functions. Thisis
done because the convenience functions used in automatically generated plug-in code do
not provide support for less often used metadata settings such as units and labels.

441 Returning mesh metadata

In order for you to be able to plot any data from your file format, your database reader
plug-in must add at least one mesh totheavt Dat abaseMet aDat a object that is passed
into the Popul at eDat abaseMet aDat a method. Adding information about a mesh to
theavt Dat abaseMet aDat a object isdone by creating an avt MeshMet aDat a
object, populating itsimportant members, and adding it to the

avt Dat abaseMet aDat a. At aminimum, each mesh must have a name, spatial
dimension, topological dimension, and a mesh type. The mesh’s name isthe identifier that
will be displayed in Vislt's plot menus and it is a so the name that will be passed later on
into the plug-in's Get Mesh method.

The spatial dimension attribute corresponds to how many dimensions are needed to
specify the coordinates for the points that make up your mesh. If your mesh existsin a2D
plane then choose 2, otherwise choose 3. Note that when you create the points for your
mesh later in the Get Mesh method, you will always create points that contain X,Y,Z
points.

The topological dimension attribute describes the number of logical dimensions used by
your mesh, regardless of the dimension of the space that it sitsin. For example, you may
have a planar surface of triangles sitting in 3D space. Such a mesh would be topologically
2D even though it sitsin 3D space. The rule of thumb that Vislt followsis that if your

Implementing your plugin 107

Creating a database reader plugin

mesh’s cells are points then you have amesh that istopologically 0D, lines are 1D,
surfaces are 2D, and volumes are 3D. This point isillustrated in Figure 4-14.

Points, OD Lines, 1D Polygons, 2D Polyhedra, 3D
° °
° °
° °

Figure 4-14: Topological dimensions. One zone is highlighted blue.

Once you have set the other basic attributes for your mesh object, consider which type of
mesh you have. Vislt supports several different mesh types and the value that you provide
in the metadata allows Vislt to tailor how it applies filters that process your data. If you
have a mesh composed entirely of particles then choose AVT_PQO NT_MESH. If you have
a structured mesh where the coordinates are specified by small vectors of values for each
axis and the rest of the coordinates are implied then you probably have arectilinear mesh
and you should choose AVT_RECTI LI NEAR_MESH. If you have a structured mesh and
every node has its own specific location in space then you probably have a curvilinear
mesh and you should choose AVT_CURVI LI NEAR_MESH. If you have a mesh for which
you specify alarge list of nodes and then create cells using indices into that list of nodes
then you probably have an unstructured mesh and you should choose
AVT_UNSTRUCTURED MESH for the mesh type. If you have a mesh that adaptively
refines then choose AVT_AMR _MESH. Findly, if your meshis specified using shapes such
as cones and spheres that are unioned or differenced using boolean operations then you
have a constructive solid geometry mesh and you should choose AVT _CSG_MESH for
your mesh’s mesh type.

If your mesh consists of multiple domains then you will need to set the number of domains
into the nunBl ocks member of theavt MeshMet aDat a object. Remember that the
number of domains tells Vislt how many pieces make up your mesh and it is especially
important to specify this number if your plug-in is derived from an MD file format
interface. You may also choose to tell Vislt what the domains are called for your file
format. Some file formats use the word: “domains” while others use “brick” or “block”. If
you choose to set the name that Vislt uses for domains then that term will be used in parts
of Vislt's GUI such asthe Subset window. Set the bl ockPi eceNanme member of the
avt MeshMet aDat a object to a suitable term that describes a domain in the context of
your simulation code. Alternatively, you can provide proper names by providing a vector
of strings containing the names by setting the bl ockNames member.

108

Implementing your plugin

Creating a database reader plugin

AVT_POINT_MESH AVT_RECTILINEAR_MESH AVT_CURVILINEAR_MESH

AVT_UNSTRUCTURED_MESH AVT_AMR_MESH

Figure 4-15: AVT mesh types (AVT_CSG_MESH not pictured).

Now that the most important attributes of the avt MeshMet aDat a object have been
specified, you can add extra information such as the names or units of the coordinate
dimensions. Once all attributes are set to your satisfaction, you must add the

avt MeshMet aDat a object to theavt Dat abaseMet aDat a object.

Listing 4-16: meshmetadata.C: C++-Language example for returning mesh metadata.

/1 NOTE - This code inconplete and is for exanple purposes only.

voi d
avt XXXXFi | eFor mat : : Popul at eDat abaseMet aDat a(avt Dat abaseMet aDat a * nd)
{
/1 Add a point nmesh to the netadata. Note that this exanmple will
/1 always expose a nesh called “particles” to Vislt. A real
/1 plug-in may want to read a |list of nmeshes fromthe data

[l file.
avt MeshMet aDat a *nmmd = new avt MeshMet aDat a;
nmd- >nane = "particles";

nmd- >spat i al Di rensi on = 3;

nmd- >t opol ogi cal Di nensi on = O;
nmd- >neshType = AVT_PO NT_MESH,
md- >nunBl ocks = 1;

nd- >Add(nmd) ;

Implementing your plugin 109

Creating a database reader plugin

/1 Add other objects to the netadata object.

4.4.2 Returning scalar metadata

Once you have exposed a mesh to Vislt by adding mesh metadata to the

avt Dat abaseMet aDat a object, you can add scalar field metadata to the metadata. A
scalar field isaset of floating point values defined for all cells or nodes of amesh. You can
expose as many scalar variables as you want on any number of meshes. The list of scalar
fields that a plug-in exposes is often determined by the data file being processed. Like
mesh metadata, scalar metadata requires a name so the scalar can be added to Vislt's
menus. The name that you choose is the same name that later is passed to the Get Var
plug-in method. Once you select a name for your scalar variable, you must indicate the
name of the mesh on which the variable is defined by setting the neshNane member of
theavt Scal ar Met aDat a object. Once you have set the nanme and neshNane
members, you can set the centering member. The centering member of the

avt Scal ar Met aDat a object can be set to AVT_NODECENT or AVT _ZONECENT,
indicating that the data is defined on the nodes or at the zone centers, respectively. If you
want to indicate units that are associated with the scalar variable, set thehasUni t s
member tot r ue and set the uni t s string to the appropriate unit names.

Listing 4-17: scalarmetadata.C: C++-Language example for returning scalar metadata.

/1 NOTE - This code inconplete and is for exanple purposes only.

voi d
avt XXXXFi | eFor mat : : Popul at eDat abaseMet aDat a(avt Dat abaseMet aDat a * nd)
{

/1 Add a nmesh called "nmesh" to the netadata object.

/1 Add a scalar to the netadata. Note that this plug-in wll
/1 always expose a scalar called "tenperature” to Vislt. A real
/1 plug-in my want to read a list of scalars fromthe data
/1 file.

avt Scal ar Met aDat a *snd = new avt Scal ar Met aDat a;

snd->name = "tenperature”;

snd- >meshNane = "nesh";

snd->centeri ng = AVT_ZONECENT;

snd->hasUnits = true;

snd->units = "Cel sius";

nd- >Add(snd) ;

/1 Add other objects to the netadata object.

110

Implementing your plugin

Creating a database reader plugin

443 Returning vector metadata

The procedure for returning vector metadatais similar to that for returning scalar
metadata. In fact, if you change the object type that you create from

avt Scal ar Met aDat a to avt Vect or Met aDat a then you are ailmost done. After
you set the basic vector metadata attributes, you must set the var Di mmember to 2 if you
have a 2-component vector or 3 if you have a 3-component vector.

Listing 4-18: vectormetadata.C: C++-Language example for returning vector metadata.

/1 NOTE - This code inconplete and is for exanple purposes only.

voi d
avt XXXXFi | eFor mat : : Popul at eDat abaseMet aDat a(avt Dat abaseMet aDat a * nd)
{

/1 Add a nesh called "nmesh" to the nmetadata object.

/1 Add a vector to the netadata. Note that this plug-in wll
/1 always expose a vector called "velocity" to Vislt. A real
/1 plug-in nmay want to read a |list of vectors fromthe data
/Il file.

avt Vect or Met aDat a *vnd = new avt Vect or Met aDat a;

vnd- >nanme = "vel ocity";

vmd- >neshNane = "nesh"”;

vind- >centeri ng = AVT_ZONECENT;

vnd- >hasUnits = true;

vnd->units = "m's";
vimd->varDi m = 3;
nd- >Add(vd) ;

/1 Add ot her objects to the netadata object.

444 Returning material metadata

Like the other types of mesh variables that we have seen so far, amaterial is defined on a
specific mesh. However, unlike the other variables types, materials can be used to name
regions of the mesh and can also be used by Vislt to break the mesh down into smaller
pieces that can be turned on and off using the Subset window. Material metadatais
storedinanavt Mat er i al Met aDat a object and it consists of : the name of the material
object, the mesh on which it is defined, the number of materials, and the names of the
materials. If you had amaterial called “matl” defined on “mesh” and “matl” was
composed of: “Stedl”, “Wood”, “Glue”, and “Air” then the metadata object needed to
expose “mat1” to Vislt would look like the following code listing:

Listing 4-19: materialmetadata.C: C++-Language example for returning material metadata.

Implementing your plugin 111

Creating a database reader plugin

/1 NOTE - This code inconplete and is for exanple purposes only.

voi d
avt XXXXFi | eFor mat : : Popul at eDat abaseMet aDat a(avt Dat abaseMet aDat a * nd)
{

/1 Add a nmesh called "nmesh" to the netadata object.

/1 Add a material to the netadata. Note that this plug-in wll
/1l always expose a nmaterial called "mt1l" to Vislt. A real
/1 plug-in my want to use fromthe data file to construct
/1 a material.

avt Materi al MetaData *mat nd = new avt Mat eri al Met aDat a;

mat nd- >nanme = "mat 1";

mat nd- >neshNane = "nmesh";

mat nd- >numvat eri al s = 4;

mat nd- >mat er i al Nanes. push_back(" Steel ") ;

mat nd- >mat eri al Nanes. push_back("Wod") ;

mat nd- >mat eri al Nanes. push_back("d ue");

mat nd- >mat er i al Nanes. push_back("Air");

nd- >Add(mat nd) ;

/1 Add other objects to the netadata object.

445 Returning expressions

Vislt provides support for defining expressions to calculate new data based on the datain
your file. Vislt provides the Expression window in the GUI for managing expression
definitions. It can be convenient for usersin certain fields, where custom expressions are
used frequently, to store the expression definitions directly in the file format or to encode
the custom expressions directly in the file metadata so they are always available when a
givenfileisvisualized. Vislt'savt Dat abaseMet aDat a object can contain custom
expressions. Thus you can add custom expressionsto the avt Dat abaseMet aDat a
object inside of your database reader plug-in. Custom expressions are added to the

avt Dat abaseMet aDat a object by creating Expr essi on (defined in Expression.h)
objectsand adding them by callingtheavt Dat abaseMet aDat a: : ADdExpr essi on
method. The Expr essi on object lets you provide the name and definition of an
expression aswell asthe expression’s expected return type (scalar, vector, tensor, etc.) and
whether the expression should be hidden from the user. Hidden expressions can be useful
if you build a complex expression that makes use of smaller sub-expressions that do not
need to be exposed in the Vislt user interface.

Listing 4-20: expressionmetadata.C: C++-Language example for returning expression metadata.

/1 NOTE - This code inconplete and is for exanple purposes only.

#i ncl ude <Expression. h>

112

Implementing your plugin

Creating a database reader plugin

voi d
avt XXXXFi | eFor mat : : Popul at eDat abaseMet aDat a(avt Dat abaseMet aDat a * nd)
{

/1 Add a nmesh called "nmesh" to the netadata object.
/1 Add scalars to the metadata object.

/1 Add expression definitions to the nmetadata object.
Expressi on *e0 = new Expression;

e0- >Set Nane("speed”) ;

e0->SetDefinition("{u,v,w");

e0- >Set Type(Expr essi on: : Vect or MeshVar) ;

e0- >Set Hi dden(f al se);

nd- >AddExpr essi on(e0) ;

Expression *el = new Expression;
el->Set Nane("density");
el->SetDefinition("mass/vol une");

el- >Set Type(Expressi on: : Scal ar MeshVar) ;
el->Set Hi dden(fal se);

nd- >AddExpr essi on(el) ;

/1 Add other objects to the netadata object.

45 Returningamesh

Once your database reader plug-in can successfully return metadata about one or more
meshes, you can proceed to implementing your plug-in's Get Mesh method. When you
make aplot in Vislt, the plot is set up using the file metadata returned by your plug-in.
When you click the Draw button in the Vislt GUI, it causes a series of requests that make
the compute engine load your | i bE plug-in and call its Get Mesh method with the name
of the mesh being used by the plot as well as the time state and domain numbers (MT or
MD formats only).

A database reader plug-in’sjob isto read relevant data from afile format and translate the
datainto aVTK object that Vislt can process. The Get Mesh method’sjob isto read the
mesh information from the file and create aVTK object that describes the mesh in the data
file. Vislt can process many different mesh types (See Figure 4-15 on page 109) and you
can return different types of VTK objects that best describe your mesh type. This section
gives example code to show how you would take data read from your file format and turn
itinto VTK objects that describe your mesh. The details of reading data from your file
format are omitted from the example code listings because those details change for each
file format. The central message in this section is how to use data from afile format to
construct different mesh types.

Implementing your plugin 113

Creating a database reader plugin

451 Determining which mesh toreturn

The Get Mesh method is always passed a string containing the name of the mesh that
should be returned from the plug-in. If your file format only ever has one mesh then you
can ignore the meshnane argument. However, if your file format can contain more than
one mesh then you should check the name of the requested mesh before returning aVTK
object so you create and return the correct mesh.

Listing 4-21: getmeshl.C: C++ Language example for which mesh to return in GetMesh.

/1 NOTE - This code inconplete and is for exanple purposes only.
#i ncl ude <l nvalidVari abl eExcepti on. h>

vt kDat aSet *
avt XXXXFi | eFor mat : : Get Mesh(const char *neshnane)

{
/1 Determ ne which nesh to return.
if (strcnp(nmeshnanme, "nmesh") == 0)
{
/1l Create a VTK object for "nmesh"
return nesh;
else if (strcnp(nmeshnane, "nesh2") == 0)
{
/1 Create a VTK object for "mesh2"
return nesh2;
}
el se
{
/1 No mesh nane that we recognize.
EXCEPTI ON1(| nval i dVari abl eExcepti on, nmeshnane);
}
return O;
}

If your database reader plug-in is derived from one of the MT or MD file format interfaces
then the Get Mesh method will have, in addition to the meshnane argument, either a

t i mest at e argument, donai n argument, or both. These extra arguments are both
integers that Vislt passes to your plug-in so your plug-in can select the right mesh for the
specified time state or domain. If your Get Mesh method accepts a timestate argument
then you can use it to return the mesh for the specified time state, which isin the range [0,
NTS- 1], where NTSis the number of time states that your plug-in returned from its

CGet NTi mest eps method. The range for the domain argument, if it is present, is
[O,NDOMS - 1] where NDOMS is the number of domains that your file format added to
the nunBl ocks member intheavt MeshMet aDat a object corresponding to the mesh
named by the meshnane argument.

114

Implementing your plugin

Creating a database reader plugin

45.2 Rectilinear meshes

A rectilinear meshisa 2D or 3D mesh
where all coordinates are aligned with -
the axes. Each axis of the rectilinear
mesh can have different, non-uniform
spacing, allowing for detailsto be
concentrated in certain regions of the
mesh. Rectlinear meshes are specified - ; -
by lists of coordinate values for each R o 1o e
axis. Since the mesh isaligned to the
axes, it isonly necessary to specify one
set of X, Y, and Z valuesto generate all
of the coordinates for the entire mesh.

Once you read the X,Y, and Z 4 4 4 4

coordinates from your datafile, you X- coor di nat es
can use them to assemble a Figure 4-22: Rectilinear mesh and its X,Y node

coordinates.

vt kRecti |l inear Gi d object. The

procedure for creating a

vt kRecti | i near G i d object and returning it from Get Mesh is shown in the next
code listing. The underlined portions of the code listing indicate incompl ete code that you
must replace with code to read values from your file format. The first such piece requires
you to read the number of dimensions for your mesh from the file format and store the
valueinto the ndi s variable. Once you have done that, read the number of nodesin
each of the X,Y,Z dimensions and store those valuesin the di s array. Finaly, fill in the
codefor reading the X coordinate valuesinto the xar r ay array and do the samefor the Y
and Z coordinate arrays. Once you have replaced the underlined code portions with code
that reads values from your file format, your plug-in should be able to return avalid

vt kRecti | inear Gi d object onceyou rebuild it.

Listing 4-23: getmesh_rect.C: C++ Language example for creating vtkRectilinearGrid in GetMesh.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

#i ncl ude <vtkFl oat Array. h>
#i nclude <vtkRectilinearGid. h>

vt kDat aSet *
avt XXXFi | eFor mat : : Get Mesh(const char *neshnane)
{

int ndinmse = 2;

int dims[3] = {1,1,1};

vt kFl oat Array *coords[3] = {0,0,0};

/] Read the ndins and nunber of X, Y,Z nodes fromfile.
ndi ns_ = NUVMBER OF MESH DI MENSI ONS;

Implementing your plugin 115

Creating a database reader plugin

dins[0] = NUMBER OF NODES I N X- DI MENSI ON.
dins[1] = NUMBER OF NODES I N Y- DI MENSI ON;
dins[2] = NUMBER OF NODES IN Z-DIMENSION, OR 1 I F 2D

/1l Read the X coordinates fromthe file.

coords[0] = vtkFloatArray:: New();

coor ds[0] - >Set Nunmber O Tupl es(di ns[0]) ;

float *xarray = (float *)coords[O0]->GetVoi dPoi nter(0);
READ di ns[0] FLOAT VALUES | NTO xarray

/1l Read the Y coordinates fromthe file.

coords[1l] = vtkFloatArray:: New();

coor ds[1] - >Set Nunmber O Tupl es(di nms[1]) ;

float *yarray = (float *)coords[1]->GetVoi dPoi nter(0);
READ di nms[1] FLOAT VALUES I NTO yarray

// Read the Z coordinates fromthe file.

coords[2] = vtkFloatArray:: New();

if(ndinms > 2)

{
coor ds[2] - >Set Nunmber O Tupl es(di ns[2]) ;
float *zarray = (float *)coords[2]->CGetVoi dPoi nter(0);
READ di ns[2] FLOAT VALUES | NTO zarray

}
el se
{
coor ds[2] - >Set Nunmber O Tupl es(1);
coor ds[2] - >Set Conponent (0, 0, 0.);
}
/1

/'l Create the vtkRectilinearGid object and set its di nensions
/1 and coordi nates.

/1

vtkRectilinearGid *rgrid = vtkRectilinearGid:: New();
rgrid->Set Di nensi ons(di ns);

rgri d->Set XCoor di nat es(coords[0]);

coords[0] ->Del ete();

rgrid->Set YCoor di nat es(coords[1]);

coords[1] ->Del ete();

rgrid->Set ZCoor di nat es(coords[2]);

coords[2] ->Del ete();

return rgrid;

116 Implementing your plugin

Creating a database reader plugin

45.3 Curvilinear meshes

Curvilinear meshes are structured meshes as

are rectilinear meshes. Whereasin a

rectilinear mesh, asmall set of independent @
X,Y,Z coordinate arrays are used to generate
the coordinate values for each node in the
mesh, in acurvilinear mesh, the node
coordinates are explicitly given for each
node in the mesh. This means that the sizes
of the X,Y,Z coordinate arraysin a
curvilinear mesh are all NX*NY*NZ where
NX isthe number of nodesin the X-
dimension, NY isthe number of nodesinthe
Y-dimension, and NZ isthe number of nodes
in the Z-dimension. Providing the
coordinates for every node permits you to
create more complex geometries than are
possible using rectilinear meshes (See
Figure 4-24).

Figure 4-24: Curvilinear mesh and its X,Y node
coordinates

Curvilinear meshes are created using thevt kSt ruct ur edGri d class. The next code
listing shows how to createavt kSt r uct ur edG i d object once you have read the
required information from your file format. The underlined portions of the code listing
indicate incomplete code that you will need to replace with code that can read datafrom
your file format. First, read the number of dimensions for your mesh from the file format
and store the value into thendi ns variable. Once you have done that, read the number of
nodes in each of the X,Y,Z dimensions and store those valuesin the di ns array. Finaly,
fill in the code for reading the X coordinate valuesinto the xar r ay array and do the same
for the Y and Z coordinate arrays. Once you have replaced the underlined code portions
with code that reads values from your file format, your plug-in should be able to return a
validvt kSt ruct uredG i d object once you rebuild it

Listing 4-25: getmesh_curv.C: C++ Language example for creating vtkStructuredGrid in GetMesh.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file fornat.

#i ncl ude <vt kPoi nts. h>
#i ncl ude <vtkStructuredGid. h>

vt kDat aSet *
avt XXXFi | eFor mat : : Get Mesh(const char *neshnane)
{

int ndins = 2;

int dinms[3] {1,1, 1},

Implementing your plugin 117

Creating a database reader plugin

/1 Read the ndins and nunber

ndi s = NUVBER OF MESH DI MENSI ONS;

of X, Y,Z nodes fromfile.

dins[0] = NUMBER OF NODES I N X- DI MENSI ON.
dins[1] = NUMBER OF NODES I N Y- DI MENSI ON;
dins[2] = NUMBER OF NODES IN Z-DIMENSION, OR 1 I F 2D

i nt nnodes = di ns[0] *di ns[1] *di ns[2] ;

/! Read the X coordinates fromthe file.

float *xarray

READ nnodes FLOAT VALUES | NTO xarray

new f | oat [nnodes] ;

/! Read the Y coordinates fromthe file.

float *yarray

READ nnodes FLOAT VALUES | NTO varray

new f | oat [nnodes] ;

/! Read the Z coordinates fromthe file.

float *zarray
if(ndinms > 2)
{

0;

zarray = new fl oat[nnodes]:

READ di ns[2] FLOAT VALUES | NTO zarr ay

}
/1

/1l Create the vtkStructuredGid and vtkPoi nts objects.

/1

vtkStructuredGid *sgrid

vt kPoi nt s

*poi nt's

sgri d->Set Poi nt s(poi nts);
sgri d->Set Di nensi ons(di ns) ;
poi nts->Del ete();

poi nt s- >Set Nunber O Poi nt s(nnodes) ;

vtkStructuredGid:: New();
vt kPoi nt's:: New();

/1 Copy the coordinate values into the vtkPoints object.

/1
/1
float *pts = (fl oat
float *xc = xarray;
float *yc = yarray;
float *zc = zarray;

i f(ndinms == 3)
{
for(int k
for(int j
for(int i

{

*pts++
*pts++
*pts++

}
}
el se if(ndins

{

for(int j =

0; k < dins[2];
0; j <dins[l];
0; i < dins[0];

*XC++;
*yc++;
*7C++;

== 2)

0; j <dins[l];

*) poi nt s->CGet Voi dPoi nt er (0);

++k)
++j)
++i)

++j)

118

Implementing your plugin

Creating a database reader plugin

0: i < dims[0]; ++i)

for(int i

{
*pts++ = *XC++,
*pts++ = *yc++,;
*pts++ = 0.

}

}

/1l Delete tenporary arrays.
delete [] xarray;
delete [] yarray;
delete [] zarray;

return sgrid;

454 Point meshes

Point meshes are collections of particle positions
that can be displayed in Vislt as points or small
glyphed icons. Point meshes can be returned from
the Get Mesh method as

vt kUnst ruct ur edG i d objects that contain i :'.'ﬁ.-é--' iy ':;,;1"5‘"'
the locations of the points and connectivity e R e
composed entirely of vertex cells. gt e e

G- 1 b
The next code listing shows how to create a iy

vt kUnst ruct ur edG i d object once you have

read the required information from your file

format. The underlined portions of the code listing

indicate incomplete code that you will need to Figure 4-26: 3D point mesh

replace with code that can read data from your file

format. First, read the number of dimensions for

your mesh from the file format and store the value into the ndi s variable. Next, read
the number of points that make up the point mesh into thennodes variable. Finaly, fill in
the code for reading the X coordinate values into the xar r ay array and do the same for
the Y and Z coordinate arrays. Once you have replaced the underlined code portions with
code that reads values from your file format, your plug-in should be able to return avalid
vt kUnst ruct uredGri d object once you rebuild it.

Listing 4-27: getmesh_point.C: C++ Language example for returning a point mesh from GetMesh.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file fornat.

#i ncl ude <vt kPoi nts. h>
#i ncl ude <vt kUnstructuredGid. h>

Implementing your plugin 119

Creating a database reader plugin

vt kDat aSet *

avt XXXFi | eFor mat : : Get Mesh(const char *neshnane)

{
int ndins = 2;
i nt nnodes;

// Read the nd

i 6 and nunber

of nodes fromfile.

ndi s = NUVBER OF MESH DI MENSI ONS

nnodes = NUVBER OF NODES I N THE MESH

/! Read the X coordinates fromthe file.

float *xarray

READ nnodes FLOAT VALUES | NTO xarray

= new fl oat[nnodes] ;

/! Read the Y coordinates fromthe file.

float *yarray

READ nnodes FLOAT VALUES | NTO varray

= new fl oat[nnodes] ;

/! Read the Z coordinates fromthe file.

float *zarray
if(ndinms > 2)
{

zarray = new fl oat[nnodes];
] FLOAT VALUES | NTO zarray

READ di ns[2

= 0;

}
/1

/1l Create the vtkPoints object and copy points into it.

/1
vt kPoi nts *po

nts = vtkPoints::New);

poi nt s- >Set Nunber O Poi nt s(nnodes) ;

float *pts = (
float *xc

float *) points->GetVoi dPointer(0);
xarray;

float *yc = yarray;
float *zc = zarray;

i f(ndims == 3)

{
for(int i =
{
pts++ =
*pts++ =
pts++ =
}
}
el se if(ndins
{
for(int i =
{
pts++ =
pts++ =
pts++ =
}
}

0; i < nnodes;
*XC++;

*yc++,

*7C++;

== 2)

0; i < nnodes;
*XC++;

*yc++,
0.;

++i)

++i)

120

Implementing your plugin

Creating a database reader plugin

/1
/1l Create a vtkUnstructuredGid to contain the point cells.
/1
vtkUnstructuredGid *ugrid = vtkUnstructuredGid:: New();
ugri d- >Set Poi nt s(poi nts);
poi nts->Del ete();
ugri d- >Al | ocat e(nnodes) ;
vt kl dType onevert ex;
for(int i = 0; i < nnodes; ++i)
{
onevertex = i;
ugrid- >l nsert Next Cel | (VTK_VERTEX, 1, &onevertex);

}

/1l Delete tenporary arrays.
delete [] xarray;
delete [] yarray;
delete [] zarray;

return ugrid;

455 Unstructured meshes

Unstructured meshes are collections of cells of various
geometries that are specified using indices into an B
array of points. When you write your Get Mesh
method, if your mesh is best described as an Ao B
unstructured mesh then you can return a \/

vt kUnst ruct ur edG i d object.

f‘;y
Hu}.}
5

Like some of the other mesh objects, the / F
vt kUnst ruct uredG i d object also usesa /
vt kPoi nt s object to contain its node array. In J
addition to the vtkPoints array, the

vtkUnstructuredGrid object maintains alist of cells

Figure 4-28: 2D unstructured mesh

whose connectivity is determined by setting the cell composed of triangles
type to one of VTK’s predefined unstructured cell and quadrilaterals. The
types (VTK_VERTEX, VTK_LI NE, labelled red and the cell
VTK_TRI ANGLE, VTK_QUAD, VTK_TETRA, numbers are abelled

VTK_PYRAM D, VTK_WEDGE, and
VTK _HEXAHEDRQON), shown in Figure 4-29. When you add a cell using one of the
predefined unstructured cell types, you must also provide alist of node indices that are

Implementing your plugin 121

Creating a database reader plugin

used as the nodes for the cell. The number of nodes that each cell contains is determined
by its cell type.

AN K

VTK_VERTEX VTK_TRIANGLE VTK_TETRA VTK_PYRAMID

S 5
2
1
0 1 3

0
VTK_LINE VTK_QUAD VTK_WEDGE VTK_HEXAHEDRON

Figure 4-29: Node ordering for some VTK unstructured cell types

The next code listing shows how to create avt kUnst r uct ur edG i d object. The
connectivity for an unstructured grid can be stored in afile format using a myriad of
different approaches. The example code assumes that the connectivity will be stored in an
integer array that contains the information for each cell, beginning with the cell type for
thefirst cell, followed by alist of node indices that are used in the cell. After that, the cell
type for the second cell appears, followed by its node indices, and so on. For example, if
you wanted to store connectivity for cells 1 and 2 in the example shown in Figure 4-28
then the connectivity array would contain: [VTK_TRI ANGLE, 2, 4, 7,

VTK_TRI ANGLE, 4, 8, 7, ...].Notethatthenodeindicesintheexamplebeginat
one so the example code will subtract one from all of the node indices to ensure that they
begin at zero, the starting index for thevt kPoi nt s array.

Listing 4-30: getmesh_ugrid.C: C++ Language example for returning an unstructured mesh from
GetMesh.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

#i ncl ude <vt kPoi nts. h>
#i ncl ude <vtkUnstructuredGid. h>
#i ncl ude <l nvalidVari abl eExcepti on. h>

122

Implementing your plugin

Creating a database reader plugin

vt kDat aSet *
avt XXXFi | eFor mat : : Get Mesh(const char *neshnane)
{

int ndins = 2;

i nt nnodes, ncells, origin = 1;

/'l Read the ndins, nnodes, ncells, origin fromfile.
ndi ns = NUMBER OF MESH DI MENS| ONS:;

nnodes = NUMBER OF NODES | N THE MESH
ncells = NUMBER OF CELLS I N THE MESH
origin = GET THE ARRAY ORIA N (0 or 1):

/! Read the X coordinates fromthe file.
float *xarray = new float[nnodes];
READ nnodes FLOAT VALUES | NTO xarray

/! Read the Y coordinates fromthe file.
float *yarray = new float[nnodes];
READ nnodes FLOAT VALUES | NTO varray

/!l Read the Z coordinates fromthe file.
float *zarray = O;
if(ndinms > 2)
{
zarray = new fl oat[nnodes];
READ di ns[2] FLOAT VALUES I NTO zarray

}

/1 Read in the connectivity array. This exanple assunes that
/1 the connectivity will be stored: type, indices, type,

/1 indices, ... and that there will be a type/index |ist

/1 pair for each cell in the nesh.

int *connectivity = 0;
ALLOCATE connectivity ARRAY AND READ VALUES INTO IT.

/1

/1l Create the vtkPoints object and copy points into it.
/1

vt kPoi nts *points = vtkPoints:: New();

poi nt s- >Set Nunber O Poi nt s(nnodes) ;

float *pts = (float *) points->Cet Voi dPoi nter(0);

float *xc = xarray;

float *yc = yarray;

float *zc = zarray;

i f(ndinms == 3)

{
for(int i = 0; i < nnodes; ++i)
{
*pts++ = *Xc++;
*pts++ = *yc++,;
*pts++ = *zc++,
}
}

Implementing your plugin 123

Creating a database reader plugin

< nnodes;

++i)

else if(ndins == 2)
{
for(int i = 0;
{
*pts++ = *Xc++;
*pts++ = *yc++,;
*pts++ = 0.
}
}
/1 Delete tenmporary arrays.
delete [] xarray;
delete [] yarray;
delete [] zarray;
/1

/1l Create a vtkUnstructuredGid to contain the point cells.

/1

vtkUnstructuredGid *ugrid = vtkUnstructuredGid:: New();
ugri d- >Set Poi nt s(poi nts);

poi

nts->Del ete();

ugri d->Al | ocate(ncells);
vt kl dType verts[8];

i nt

for(int i

{

*conn

0; i

connectivity
< ncel ls;

++i)

int fileCell Type = *conn++;

/1 You file s cell Type will
have to translate fileCell Type to a VIK

11 will

/1 cell type.

l'ikely not

mat ch so you

int cell Type = MAP fileCell Type TO VIK CELL TYPE

/] Determ ne nunber
i f(cell Type == VTK_VERTEX)

nverts = 1;

el se if(cell Type
nverts = 2;

el se if(cell Type
nverts = 3;

el se if(cell Type
nverts = 4;

el se if(cell Type
nverts = 4;

el se if(cell Type
nverts = 5;

el se if(cell Type
nverts = 6;

el se if(cell Type
nverts = 8;

el se

{

of vertices for

VTK_LI NE)
VTK_TRI ANGLE)
VTK_QUAD)
VTK_TETRA)
VTK_PYRAM D)
VTK_WEDGE)

VTK_HEXAHEDRON)

delete [] connectivity;
ugrid->Del ete();

/1l O her cell

type -

each cell type

need to add a case for it.

124

Implementing your plugin

Creating a database reader plugin

/1 In the nmeantime, throw exception or if you
/'l know enough, skip the cell.
EXCEPTI ONO(I nval i dVari abl eExcepti on, meshnane);

}

/1 Make a list of node indices that nmake up the cell
for(int j = 0; j < nverts; ++4j)

verts[j] = conn[j] - origin
conn += nverts;

!/l Insert the cell into the nesh.

ugrid->InsertNextCell (cell Type, nverts, verts);

}

delete [] connectivity;

return ugrid;

The previous code listing shows how to create an unstructured mesh in a

vt kUnst ruct ur edG i d object. The code listing contains underlined portionsthat you
must replace with working code to read the relevant data from your file format. The first
instance of code that must be replaced are the lines that read ndi ns, nnodes, ncel | s,
and or i gi n fromthefile format. The ndi ns variable should contain 2 or 3, depending
on whether your datais 2D or 3D. The nnodes variable should contain the number of
nodes that are used in the set of vertices that describe your unstructured mesh. The

ncel | s variable should contain the number of cellsthat will be added to your
unstructured mesh. The or i gi n variable should contain 0 or 1, depending on whether
your connectivity indices begin at 0 or 1. Once you have set those variables to the
appropriate values, you must read in the X,Y, and Z coordinate arrays from the file format
and store the valuesinto the xar r ay, yar r ay, and zar r ay array variables. If your file
format keeps X,Y,Z values together in asingle array then you may be able to read the
coordinate values directly into the vt kPoi nt object’'s memory, skipping the step of
copying the X,Y,Z coordinate components into the vt kPoi nt object.

After reading in the coordinate values from your file format, unstructured meshes require
two more changes to the code in the listing. The next change requires you to allocate
memory for aconnect i vi t y array, which stores the type of cells and the nodes indices
of the nodes that are used in the cells. The final change that you must make to the source
code in the listing islocated further down in the loop that adds cells to the

vt kUnst ruct ur edG i d object. The cell type read from your file format will most
likely not use the same enumerated type values that VTK uses for its cell types
(VTK_VERTEX, VTK_LI NE, ...) so you will need to add code to translate from your cell
type designation to VTK cell type numbers. After making the necessary changes and
rebuilding your plug-in, your plug-in's Get Mesh method should be capable of returning a
validvt kUnst ruct uredGri d object for Vislt to plot.

Implementing your plugin 125

Creating a database reader plugin

4.6 Returning ascalar variable

Now that you can successfully create a Mesh plot of the meshesfrom your file format, you
can focus on other types of data such as scalars. If you exposed scalar variablesin your
plug-in's Popul at eDat abaseMet aDat a method then those variable names will
appear in the plot menus for plots that can use scalar variables (e.g. the Pseudocolor plot).
When you create a plot of a scalar variable and click the Draw button in the Vislt GUI,
Vislt will tell your database reader plug-in to open your file, read the mesh, and then your
plug-in's Get Var method will be called with the name of the variable that you want to
plot. The Get Var method, like the Get Mesh method, takes a variable name as an
argument. When you receive the variable name in the Get Var method you should access
your file and read out the desired variable and return it inaVTK dataarray such asa

vt KFl oat Array oravt kDoubl eArray. A vt kFl oat Array isaVTK object that
encapsulates a dynamically allocated array of a given length. The length of the array that
you allocate to contain your variable must match either the number of cellsin your mesh
or the number of nodes in your mesh. The length is determined by the scalar variable’'s
centering (cell-centered, node-centered).

Listing 4-31: getvar.C: C++ Language example for returning data from GetVar.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

#i ncl ude <vtkFl oat Array. h>

vt kDat aArray *
avt XXXFi | eFor mat : : Get Var (const char *var nane)
{
i nt nval s;
/1 Read the nunmber of vaues contained in the array
/1 specified by varnane.
nvals = NUMBER OF VALUES | N ARRAY NAMED BY var nane;

/1 Alocate the return vtkFl oatArray object. Note that
/1 you can use vtkFl oat Array, vtkDoubl eArray,

/'l vtkUnsignedChar Array, vtklintArray, etc.

vt kFl oat Array *arr = vtkFloatArray:: New();

arr->Set Nunber O Tupl es(nval s);

float *data = (float *)arr->CetVoi dPoi nter(0);

READ nval s FLOAT NUMBERS | NTO THE data ARRAY.

return arr;

In the previous code listing, there are two underlined areas that need to have code added to
them in order to have a completed Get Var method. The first change that you must make
isto add codeto read the size of the array to be created into thenval s variable. The value
that isread into thenval s variable must be either the number of cellsin the mesh on

126

Implementing your plugin

Creating a database reader plugin

which the variable is defined if you have a cell-centered variable or it must be the number
of nodes in the mesh. Once you have successfully set the proper valueinto thenval s
variable, you can proceed to read values from your file format into the data array, which
points to storage owned by the vt kFI oat Ar r ay object that will be returned from the
Get Var method. Once you have made these changes, you can rebuilt your plug-in and
begin plotting scalar variables.

4.7 Returning avector variable

If you exposed vector variablesin your plug-in’s Popul at eDat abaseMet aDat a
method then those variable names will appear in the plot menus for plots that can use
vector variables (e.g. the Vector plot). When you create a plot of a vector variable and
click the Draw button in the Vislt GUI, Vislt will tell your database reader plug-in to open
your file, read the mesh, and then your plug-in's Get Vect or Var method will be called
with the name of the variable that you want to plot. The Get Vect or Var method, like
the Get Mesh method, takes a variable name as an argument. When you receive the
variable namein the Get Vect or Var method you should access your file and read out
the desired variable and return it inaVTK dataarray suchasavt kFl oat Array or a
vt kDoubl eArray. A vt kFl oat Array isaVTK object that encapsulates a
dynamically alocated array of agiven length. The length of the array that you allocate to
contain your variable must match either the number of cellsin your mesh or the number of
nodes in your mesh. The length is determined by the scalar variable’s centering (cell-
centered, node-centered). In addition to setting the length, which like a scalar variableis
tied to the number of cells or nodes, you must also set the number of vector components.
In Vislt, vector variables always have three components. If the third component is not
needed then all valuesin the third component should be set to zero.

The Get Vect or Var code listing shows how to return avt kFl oat Ar r ay with
multiple components from the Get Vect or Var method. As with the code listing for
CGet Var, this code listing requires you to replace underlined lines of code with code that
reads data from your file format and stores the results in the variables provided.

Listing 4-32: getvectorvar.C: C++ Language example for returning data from GetVectorVar.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

#i ncl ude <vtkFl oat Array. h>
#i ncl ude <l nvalidVari abl eExcepti on. h>

vt kDat aArray *
avt XXXFi | eFor mat : : Get Vect or Var (const char *var nane)

{

int nvals, nconps = 3;

/1 Read the nunmber of values contained in the array
/1 specified by varnane.

Implementing your plugin 127

Creating a database reader plugin

nvals = NUVBER OF VALUES I N ARRAY NAMED BY var nane;
nconps = NUMBER OF VECTOR COVPONENTS | N ARRAY NAMED BY varnane:

/1 Read conmponent 1 fromthe file.
float *conpl = new fl oat[nval s];
READ nval s FLOAT VALUES | NTO conpl

/1l Read conmponent 2 fromthe file.
float *conp2 = new fl oat[nval s];
READ nval s FLOAT VALUES | NTO conp2

/1 Read conmponent 3 fromthe file.
float *conmp3 = O;
i f(ncomps > 2)
{
comp3 = new fl oat[nval s];
READ nval s FLOAT VALUES | NTO conp3

}

/1 Al'locate the return vtkFl oat Array object. Note that
/1l you can use vtkFl oat Array, vtkDoubl eArray,

/'l vtkUnsi gnedChar Array, vtklintArray, etc.

vt kFl oat Array *arr = vtkFloatArray:: New();

arr->Set Nunber O Conponent s(3) ;

arr->Set Nunber O Tupl es(nval s);

float *data = (float *)arr->Cet Voi dPoi nter(0);

float *cl = conpl;

float *c2 = conp2;
float *c3 = conp3;
i f(ncomps == 3)
{
for(int i =0; i < nvals; ++i)
{
*dat a++ = *Ccl++;
*dat a++ = *Cc2++;
*dat a++ = *Cc3++;
}
el se if(nconmps == 2)
{
for(int i =0; i < nvals; ++i)
{
*dat a++ = *cl++;
*dat a++ = *Cc2++;
*data++ = 0. ;
}
}
el se
{

delete [] conpil;

delete [] conp2;

delete [] conp3;

arr->Del ete();

EXCEPTI ON1(I nval i dVari abl eExcepti on, varnamne);

128 Implementing your plugin

Creating a database reader plugin

}

/1l Delete tenporary arrays.
delete [] conpl;
delete [] conmp2;
delete [] comp3;

return arr;

48 UsingaVTK reader class

The implementations so far for the Get Mesh, Get Var , and Get Vect or Var plug-in
methods have assumed that the database plug-in would do the work of interacting with the
file format to read datainto VTK form. Most of the work of reading afile and creating
VTK objects from it can be handled at the VTK level if you wish. Thismeansthat it is
possible to use an existing VTK reader classto read datainto Vislt if you are willing to
implement your plug-in methods so that they in turn call the VTK reader object’s methods.
See Vislt’'s VTK database reader plug-in for an example of how to call VTK reader objects
from inside a Vislt database reader plug-in.

5.0 Advanced topics

If you've implemented your database reader plug-in using only the techniques outlined in
this chapter so far then you likely have a database reader plug-in that works and correctly
serves up itsdatato Vislt in VTK form. This part of the chapter explains some of the more
advanced, though not necessarily required, techniques that you can use to enhance your
plug-in. For instance, you can enhance your plug-in so it returns the correct simulation
times from the datafiles. You can also add code to return data and spatial extents for your
data, enabling Vislt to make more optimization decisions when processing files with
multiple domains.

51 Returning cyclesand times

Simulations often iterate for many thousands of cycles while they solve their systems of
equations. Generally, each ssmulation cycle has an associated cycle number and time
value. Many file formats save thisinformation so it can be made available |ater to post-
processing tools such as Vislt. Vislt uses cycles and times to help you navigate through
time in your database by providing the same time frame of reference that your simulation
used. Vislt's File panel can display times next to each time state in a database and can

Advanced topics 129

Creating a database reader plugin

also show the current time value as you scroll through time using the time slider. Cycle
and time values for the current time state are often displayed in the visualization window.

Cycles and times in Vislt's user interface

Figure 4-33: Cycles and times values are used to help you navigate through time

Returning cycle and time values from your plug-in is completely optional. In fact,
returning cycle and time values for data such as CAD drawings does not make sense.
Since returning cycles and timesis optional in a Vislt database reader plug-in, you can
choose to not implement the methods that return cycles and times. You can also implement
code to return time but not cycles or vice-versa.

The mechanics of returning cycles and times are alittle different depending on whether
you have written an ST or an M T database reader plug-in. In any case, if your plug-in
implements the methods to return cycles or times then those methods will be some of the
first methods called when Vislt accesses your database reader plug-in. Vislt callsthe
methods to get cycles and times and if the returned values appear to be valid then they are

130 Advanced topics

Creating a database reader plugin

added to the metadata for your file so they can be returned to the Vislt clients and used to
populate windows such as the File Information window, shown in Figure 4-34.

-1

Flla = locaihos) : home whill lec b dain PDEDBADD, pdb j

Daqnbass: homa'whitkae b dais POB/dbADD. Bl

S rraled boan = Ho

Datnbase cammen: Flnsh datsbase: dbA for tesling Visl's datnbase o
Flia farem: POB_1.0

Hum Tims Ststos: 10

MisnDnta ts HOT opopulnted on siale changes

usaCalchAllMaihn: 0

Foamn

il etorda are lRom 14 o 18,5,

)
AN Times are Accurye
Timae: 14, 145, 15 155, 16, 165, 17, 1756 18, 185
AR Tyches am Aceumbe
iﬁlll-l:{l. 1,2,3.4,6,6,7.8,8
L N

Hame = logical mash
Humbsr ol BIGRS = 1

Biack oaigin = 0 -
1 | 3

post | Dismiss |

Figure 4-34: The File Information window can be used to inspect
the cycles and times returned from your plug-in.

511 Returningcyclesand timesin an ST plug-in

When Vislt creates plug-in objectsto handle alist of filesusing an ST plug-in, thereisone
plug-in object per filein the list of files. Since each plug-in object can only ever be
associated with one file, the programming interface for returning cycles and times for an
ST plug-in provides methods that return a single value. The methods for returning cycles
and timesfor an ST plug-in are:

virtual bool ReturnsVval i dCycl e() const { return true; }
virtual int CGet Cycl e(voi d) ;
virtual bool ReturnsVal i dTi me() const { return true; }

virtual double Get Ti me(voi d);

Implementing valid cycles and times can be done independently of one another and there
is no requirement that you have to implement both or either of them, for that matter. The
Ret ur nsVal i dCycl e method isasimple method that you should exposeif you plan to
provide a custom Get Cycl e method in your database reader plug-in. If you provide
CGet Cycl e thentheRet ur nsVal i dCycl e method should return true. The same
pattern appliesif you implement Get Ti nme - except that you would also implement the

Advanced topics 131

Creating a database reader plugin

Ret ur nsVal i dTi me method. Replace the underlined sections of code in the listing
with code to read the correct cycle and time values from your file format.

Listing 4-35: cycletime_st.C: C++ Language example for returning cycles, times from ST plug-in.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

i nt

avt XXXFi | eFor mat : : Get Cycl e(voi d)

{
int cycle = OPEN FILE AND READ THE CYCLE VALUE;
return cycle;

}

doubl e

avt XXXFi | eFor mat : : Get Ti ne(voi d)

{
doubl e dtinme = OPEN FI LE AND READ THE Tl ME VALUE;
return dtime;

}

In the event that you implement the Get Cycl e method but no cycle valueis availablein
thefile, you can return the | NVALI D_CYCLE value to make Vislt discard your plug-in’s
cycle number and guess the cycle number from the filename. If you want Vislt to
successfully guess the cycle number from the filename then you must implement the

CGet Cycl eFr onFi | enane method.

I I
i nt
avt XXXXFi | eFor mat : : Get Cycl eFr onti | enanme(const char *f) const
{

}
I I

return QuessCycle(f);

512 Returningcyclesand timesin an MT plug-in

An MT database reader plug-in may return cycles and times for multiple time states so the
programming interface for MT plug-ins allows you to return vectors of cycles and times.
In addition, an MT database reader plug-in prefers to know upfront how many time states
will be returned from the file format so in addition to Get Cycl es and Get Ti nes
methods, thereisaGet NTi nmest eps method that isamong the first methods called from
your database reader plug-in.

132

Advanced topics

Creating a database reader plugin

virtual void GetCycles(std::vector<int> &
virtual void GetTinmes(std::vector<double> &);
virtual int GetNTinesteps(void);

Aswith ST plug-ins, thereis no requirement that an MT plug-in must provide alist of
cycles or times. However, an MT plug-in must provide a Get NTi nest eps method. If
you are enhancing your database reader plug-in to return cycles and timesthenit is
convenient to implement your Get NTi nest eps method such that it just calls your

Cet Cycl es or Get Ti nmes method and returns the length of the vector returned by those
methods. This simplifies the implementation and ensures that the number of time states
reported by your database reader plug-in matches the length of the cycle and time vectors
returned from Get Cycl es and Get Ti nes. Replace the underlined sections of code in
the listing with code to read the correct cycles and times from your file format.

Listing 4-36: cycletime_mt.C: C++ Language example for returning cycles, times from MT plug-in.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

voi d
avt XXXFi | eFor mat : : Get Cycl es(std::vector<int> &cycl es)
{
int ncycles, *vals = 0;
ncycles = OPEN FI LE AND READ THE NUMBER OF CYCLES;
READ ncycl es | NTEGER VALUES | NTO THE val s ARRAY;

/1l Store the cycles in the vector
for(int i = 0; i < ncycles; ++i)
cycl es. push_back(val s[i]);

delete [] vals;

}
voi d
avt XXXFi | eFor mat : : Get Ti me(std: : vect or <doubl e> &t i nes)
{
int ntines;
doubl e *vals = 0;
ntimes = OPEN FILE AND READ THE NUMBER OF TI MES;
READ ntines DOUBLE VALUES | NTO THE val s ARRAY
/1l Store the times in the vector
for(int i =0; i < ntines; ++i)
ti mes. push_back(val s[i]);
delete [] vals;
}
i nt

avt XXXXFi | eFor mat : : Get NTi nest eps(voi d)

Advanced topics 133

Creating a database reader plugin

{

std::vector<doubl e> tines;
Cet Ti nes(tines);
return tines.size();

52 Auxiliary data

This section describes how to enable your MD database reader plug-in so it can provide
auxiliary data such as data extents, spatial extents, and materialsto Vislt if they are
availableinyour file format. “Auxiliary data’, is the generic term for many types of data
that Vislt's pipeline can use to perform specific tasks such as I/0 reduction or material
selection. Vislt's database reader plug-in interfaces provide a method called

Get Auxi | i ar yDat a that you can implement if you want your plug-in to be capabl e of
returning auxiliary data. Note however that if your plug-inisMTMD then you will haveto
cache your spatial and data extents in the plug-in’s variable cache in the

Popul at eDat abaseMet aDat a method instead of returning that information from the
CGet Auxi | i ar yDat a method. This subtle difference in how certain metadatais
accessed by Vislt must be observed by an MTMD plug-in in order for it to return spatial
and data extents.

The method arguments for the Get Auxi | i ar yDat a method may vary somewhat
depending on whether your database reader plug-inisbased onthe STSD, STMD, MTSD,
MTMD interfaces. Thereis an extrainteger argument for the time state if your plug-inis
MT and there is another integer argument for the domain if your plug-inis MD. Those
differences aside, the Get Auxi | i ar yDat a method always accepts the name of a
variable, a string indicating the type of data being requested, a pointer to optional data
required by the type of auxiliary data being requested, and areturn reference for a
destructor function that will be responsible for freeing resourcesfor the returned data. The
variable name that Vislt passesto the Get Auxi | i ar yDat a method is the name of a
variable such asthose passed to the Get Var method when Vislt wantsto read avariable’'s
data.

521 Returning data extents

When an MD database reader plug-in provides data extents for each of its domains, Vislt
has enough information to make important optimization decisionsin filters that support
dataextents. For example, if you create a Contour plot using a specific contour value, Vislt
can check the data extents for each domain before any domains are read from disk and
determine the list of domains that contain the desired contour value. After determining
which subset of the domains will contribute to the final image, Vislt’'s compute engine
then reads and processes only those domains, saving work and accelerating Visit's
computations. For amore compl ete explanation of data extents, see “Writing data extents’
on page 72.

134

Advanced topics

Creating a database reader plugin

In the context of returning data extents, Vislt first checks a plug-in’s variable cache for
extents. If the desired extents are not available then Vislt callsthe plug-in's

Get Auxi | i ar yDat a method with the name of the scalar variable for which data
extents are required and also passes AUXI LI ARY_DATA DATA_EXTENTS asthetype
argument, indicating that the Get Auxi | i ar yDat a method is being called to obtain the
data extents for the specified scalar variable. If the data extents for the specified variable
are not available then the Get Auxi | i ar yDat a method should return O. If the data
extents are available then the list of minimum and maximum values for the specified
variable are assembled into an interval tree structure that Vislt usesfor fast comparisons of
different dataranges. Once theinterval treeis constructed, as shown in the code listing, the
Cet Auxi | 1 ar yDat a method must return the interval tree object and set the destructor
function argument to a function that can be called to later destroy theinterval tree. To add
support for data extents to your database reader plug-in, copy the Get Auxi | i ar yDat a
method in the code listing and replace the underlined lines of code with code that reads the
required information from your file format.

Listing 4-37: dataextents.C: C++ Language example for returning data extents.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file fornmat.

#i ncl ude <avtlnterval Tree. h>

/1 STND version of GetAuxiliaryData.

void *

avt XXXXFi | eFormat : : Get Auxi | i aryDat a(const char *var,
i nt dommin, const char *type, void *,
Destructor Function &df)
void *retval = 0;

i f(strcnp(type, AUXI LI ARY_DATA DATA EXTENTS) == 0)

/! Read the nunber of donmmins for the nesh.
int ndons = READ NUMBER OF DOVAI NS FROM FI LE;

/! Read the mn/nmax val ues for each domain of the
/1 "var" variable. This infornmation should be in
/1 a single file and should be avail abl e without
/1 having to read the real data.

doubl e *m nval s = new doubl e[ndons] ;

doubl e *maxval s = new doubl e[ndons] ;

READ ndons DOUBLE VALUES I NTO m nval s ARRAY.

READ ndons DOUBLE VALUES | NTO maxval s ARRAY.

/] Create an interval tree
avtinterval Tree *itree = new avtlnterval Tree(ndoms, 1);
for(int dom= 0; dom < ndons; ++don)

{
doubl e range[2];

Advanced topics 135

Creating a database reader plugin

range[0] = m nval s[donj;
range[1] = nmaxval s[donj;
i tree->AddEl enent (dom range);

}

itree->Cal cul ate(true);

/1l Delete tenporary arrays.
delete [] m nvals;
delete [] maxval s;

/] Set return val ues
retval = (void *)itree;
df = avtlnterval Tree:: Destruct;

}

return retval;

5.22 Returning spatial extents

Another type of auxiliary datathat Vislt supports for MD file formats are spatial extents.
When Vislt knows the spatial extents for all of the domains that comprise a mesh, Vislt
can optimize operations such as the Slice operator by first determining whether the slice
will intersect a given domain. The Slice operator is thus able to use spatial extents to
determine which set of domains must be read from disk and processed in order to produce
the correct visualization. Spatial extents are used in thisway by many filters to reduce the
set of domains that must be processed.

When Vislt asks the database reader plug-in for spatial extents, the

Get Auxi | i ar yDat a method is called with its type argument set to

AUXI LI ARY_DATA SPATI AL_EXTENTS. When Vislt creates spatial extents, they are
stored in an interval tree structure as they are with data extents. The main difference isthe
input into the interval tree. When adding information about a specific domain to the
interval tree, you must provide the minimum and maximum spatial valuesfor thedomain’s
X, Y, and Z dimensions. The spatial extents for one domain are expected to be provided in
the following order: xmin, xmax, ymin, ymax, zmin, zmax. To add support for spatial
extents to your database reader plug-in, copy the Get Auxi | i ar yDat a method in the
code listing and replace the underlined lines of code with code that reads the required
information from your file format.

Listing 4-38: spatialextents.C: C++ Language example for returning spatial extents.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file fornmat.

#i ncl ude <avtlnterval Tree. h>

/1 STND version of GetAuxiliaryData.

136

Advanced topics

Creating a database reader plugin

void *
avt XXXXFi | eFormat : : Get Auxi | i aryDat a(const char *var,

i nt domain, const char *type, void *,
Destructor Functi on &df)

void *retval = 0O;

i f(strcnp(type, AUXI LI ARY_DATA SPATI AL_EXTENTS) == 0)
{

/1 Read the nunmber of donains for the nesh.
int ndons = READ NUMBER OF DOVAI NS FROM FI LE;

/'l Read the spatial extents for each domain of the
/1 mesh. This information should be in a single

/1 and shoul d be avail able w thout having to

/1 read the real data. The expected format for

/1 the data in the spatialextents array is to

/1 repeat the follow ng pattern for each domain:

/1l xmn, xmax, ymn, ymax, zmn, zmax.

doubl e *spati al extents = new doubl e[ndonms * 6];

READ ndons*6 DOUBLE VALUES | NTO spati al extents ARRAY.

/1l Create an interval tree
avtinterval Tree *itree = new avtlnterval Tree(ndons, 3);
doubl e *extents = spati al extents;
for(int dom= 0; dom < ndons; ++dom
{
i tree->AddEl enent (dom extents);
extents += 6;

}

itree->Cal cul ate(true);

/1 Delete tenporary array.
delete [] spatial extents;

/] Set return val ues
retval = (void *)itree;
df = avtlnterval Tree:: Destruct;

}

return retval;

523

Returning materials

Materials are another type of auxiliary data that database plug-ins can provide. A material
classifies different pieces of the mesh into different named subsets that can be turned on
and off using Vislt's Subset window. In the ssmplest case, you can think of a material as

acell-centered variable, or matlist, defined on your mesh where each cell contains an

integer that identifies a particular material such as*” Steel” or “Air”. Vislt's
avt Mat eri al object isused to encapsulate knowledge about materials. The

avt Mat eri al object contains the matlist array and alist of names corresponding to

Advanced topics

137

Creating a database reader plugin

each unique material number in the matlist array. Materials can also be structured so that
instead of providing just one material number for each cell in the mesh, you can provide
multiple materials per cell with volume fractions occupied by each. So-called “mixed
materials’ are created using additional arrays, described in “Materials’ on page 83. To add
support for materialsin your database reader plug-in’s Get Auxi | i ar yDat a method,
replace the underlined lines in the code example with code that read the necessary values

from your file format.

Listing 4-39: matclean.C: C++ Language example for returning material data.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

#i ncl ude <avtMaterial . h>

/1 STND version of GetAuxiliaryData.

voi d *

avt XXXXFi | eFor mat : : Get Auxi | i aryDat a(const char *var,
i nt domain, const char *type, void *,
Dest ruct or Functi on &df)

void *retval = 0O;

i f (strcnp(type, AUXI LI ARY_DATA MATERI AL) == 0)
{

int dims[3] = {1,1,1}, ndins
// Structured nmesh case

1,

ndinms = VESH DI MENSION, 2 OR 3;

dinms[0] = NUMBER OF ZONES I N X DI MENSI ON

dims[1] = NUMBER OF ZONES I N Y DI MENSI ON;

dins[2] = NUMBER OF ZONES IN Z DIMENSION, OR 1 I F 2D

/1 Unstructured nesh case
dins[0] = NUMBER OF ZONES | N THE MESH
ndins = 1;

/1l Read the nunmber of materials fromthe file. This
/1 must have already been read fromthe file when

/1 Popul at eDat abaseMet aDat a was cal | ed.
int nmats = NUMBER OF MATERI ALS;

/1l The matnos array contains the |list of numbers that
/] are associated with particular materials. For exanpl e,
/1 matnos[0] is the nunber that will be associated wth

/1 the first material and any tinme it is seen in the

/1 matlist array, that number should be taken to nean

/1 material 1. The nunbers in the matnos array nust

/1 all be greater than or equal to 1.
int *matnos = new int[nmats];
READ nmats | NTEGER VALUES | NTO THE mat nos ARRAY.

/! Read the material nanes fromyour file format or

138

Advanced topics

Creating a database reader plugin

/1 make up nanes for the materials. Use the same

/'l approach as when you created material nanmes in

/1 the Popul at eDat abaseMet aDat a net hod.

char **nanes = new char *[nmats];

READ MATERI AL NAMES FROM YOUR FI LE FORVAT UNTI L EACH
ELEMENT OF THE nanes ARRAY PO NTS TO | TS OM STRI NG

/1 Read the matlist array, which tells what the naterial
/1 is for each zone in the nesh.

int nzones = dins[0] * dinms[1] * dins[2];

int *matlist = new int[nzones];

READ nzones | NTEGERS INTO THE natlist array.

/1l Optionally create m x_mat, mx_next, mx_zone, m x_vf
/1l arrays and read their contents fromthe file format.

/1 Use the information to create an avtMaterial object.
avtMaterial *mat = new avtMaterial (

nmat s,

mat nos,

names,

ndi s,

di nms,

0,

matlist,

0, // length of m x arrays
0, // mx_mat array
0, // mx_next array
0, // mx_zone array
0 // mx_vf array
)

/1 Clean up.

delete [] matlist;

delete [] matnos;

for(int i =0; i < nmats; ++i)
delete [] nanes[i];

delete [] nanes;

/] Set the return val ues.

retval = (void *)nat;

df = avtMaterial::Destruct;
}

return retval;

5.3 Returning ghost zones

Ghost zones are mesh zones that should not be visible in the visualization but may provide
additional information such as values along domain boundaries. Vislt uses ghost zones for

Advanced topics 139

Creating a database reader plugin

ensuring variable continuity across domain boundaries, for removing internal domain
boundary faces, and for blanking out specific zones. This section covers the code that must
be added to make your database reader plug-in order for it to return ghost zones to Vislt.

5.3.1 Blanking out zones

Blanking out specific zones so they do not appear in avisualization is acommon practice
for creating holes in structured meshes so cells zones that overlap or tangle on top of one
another can be removed from the mesh. If you want to create a mesh that contains voids
where zones have been removed then you can add a special cell-centered array to your
mesh before you return it from your plug-in's Get Mesh method. The code in the listing
can be used to remove zones from any mesh type and works by looking through a mesh-
sized array containing on/off values for each zone and sets the appropriate values into the
ghost zone array that gets added to the mesh object. Replace any underlined code with
code that can read the necessary values from your file format.

Listing 4-40: gz_blank.C: C++ Language example for returning a mesh with blanked out zones.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

#i ncl ude <avt Ghost Dat a. h>
#i ncl ude <vtkUnsi gnedChar Array. h>

vt kDat aSet *
avt XXXXFi | eFor mat : : Get Mesh(const char *meshnane)
{

/1 Code to create your nesh goes here.

vt kDat aSet *retval = CODE TO CREATE YOUR MESH;

/1 Now that you have your nesh, figure out which cells need
/1 to be renoved.

int nCells = retval ->Get Nunber O Cel I s();

int *blanks = new int[nCells];

READ nCel ls | NTEGER VALUES | NTO bl anks ARRAY.

/1 Now that we have the blanks array, create avtGhostZones.
unsi gned char real Val = 0, ghost = 0;
avt Ghost Dat a: : AddGhost ZoneType(ghost,
ZONE_NOT_APPLI CABLE _TO PROBLEM ;
vt kUnsi gnedChar Array *ghost Cel I's = vtkUnsi gnedChar Array: : New();
ghost Cel | s- >Set Nane(" avt Ghost Zones") ;
ghost Cel | s- >Al | ocat e(nCel | s);
for(int i =0; i < nCells; ++i)

i f(blanks[i])

ghost Cel | s- >l nsert Next Val ue(real Val);
el se

ghost Cel | s- >l nsert Next Val ue(ghost) ;

140

Advanced topics

Creating a database reader plugin

retval - >Get Cel | Dat a() - >AddArray(ghost Cel | s);
ret val - >Set Updat eGhost Level (0);
ghost Cel | s->Del ete();

/1 Clean up
del ete [] bl anks;

return retval;
}
[|

5.3.2 Ghost zones at the domain boundaries

When ghost zones are used to ensure continuity across domains, an extralayer of zones
must be added to the mesh boundaries where the boundary is shared with another domain.
Once you have done that step, the approach for providing ghost zones is the same as for
blanking out cells using ghost zones if your bl anks array contains zeroes for only the
zones that appear on domain boundaries. The one minor difference is that you must
substitute the DUPLI CATED ZONE | NTERNAL TO_ PROBLEMghost zonetype for the
ZONE_NOT_APPLI CABLE_TO_PROBLEMghost zone type in the code example.

54 Parallelizing your reader

Vislt isadistributed program made up of multiple software processes that act as awhole.
The software process that reads in data and processes it is the compute engine, which
comesin serial and paralel versions. All of thel i bE plug-insin Vislt also have both
serial and parallel versions. The paralel | i bE plug-ins can contain specialized MPI
communication to support the communication patterns needed by the algorithms used. If
you want to parallelize your database reader plug-in then, in most cases, you will have to
use the MD interface or convert from SD to MD. There are some SD formats that can
adaptively decompose their data so each processor has work (see the ViSUS plug-in) but
most database plug-ins that benefit from parallelism instead are implemented as MD plug-
ins. MD plug-ins are a natural fit for the parallel compute engine because they serve data
that isaready decomposed into domains. Some database reader plug-ins, such asthe BOV
plug-in, take single domain meshes and automatically decompose them into multiple
domains for faster processing on multiple processors.

Deriving your plug-in from an MD interfaceisuseful sinceit naturally tells Vislt to expect
data from more than one domain when reading your file format. There are a number of
parallel optimizations that can be made inside of your MD database reader plug-in. For
example, you might have one processor read the metadata and broadcast it to all other
processors so when you visualize your datawith alarge number of processors, they are not
al trying to read the file that contains the metadata.

Vislt’'s parallel compute engine can use one of two different load balancing schemes: static
or dynamic. In static load balancing, each processor is assigned afixed list of domains and
each of those domainsis processed one at atimein parallel visualization pipelines until

Advanced topics 141

Creating a database reader plugin

the result is computed. When static |oad balancing is used, the same code is executed on
all processors with different data and there are more opportunities for parallel, global
communication. When Vislt's parallel compute engine uses dynamic load balancing, the
master process acts as an executive that assigns work as needed to each processor. When a
processor needs work, it requests adomain from the executive and it processes the domain
in itsvisualization pipeline until the results for the domain have been calculated. After
that, the processor asks the executive for another domain. In dynamic load balancing, each
processor can be working on very different operations so there is no opportunity to do
global communication. Vislt attempts to do dynamic load balancing unless any one of the
filtersin its visualization pipeline requires global communication, in which case static
load balancing must be used. This means that the places where global communication can
occur are few.

Vislt's database plug-in interfaces provide the Act i vat eTi nest ep method asa
location where global, parallel communication can be performed safely. If your parallel
database reader needs to do parallel communication such as broadcasting metadata to all
processors, or figuring out data extentsin parallel then that code must be added in the
Acti vat eTi mest ep method.

142 Advanced topics

Chapter 5 |nstrumenting asmulation

code

1.0

2.0

Overview

Some simulation programs include a runtime graphics package, which creates
visualizations of simulation results during execution. Runtime graphics have a number of
advantages over writing out graphics files that can be visualized after the fact by a
visualization tool. First of all, graphics files are written far less frequently than the
simulation calculates its data because of time and disk space limitations. Secondly,
runtime graphics packages have access to al of the variables that a simulation cal culates,
whereas a graphics file usually contains a small subset of the variables. Finally, by using
runtime graphics, users can visualize simulation results as the simul ation executes and the
user can possibly intercede to change how the simulation runs.

Vislt provides alibrary that can be used by simulation codes in order to expose data to
Vislt, allowing you to use Vislt as a runtime graphics package. This chaper explainsin
detail the stepsrequired to instrument your C or Fortran simulation so that Vislt can access
its data for the purpose of runtime graphics.

Architecture

Parallel simulations often use a technique called domain decomposition (see Figure 5-1)
to break up the simulated problem into smaller pieces called domains. We've learned in
earlier chapters how to store data from different domainsin avariety of file formats such
as Silo and VTK. Simulations often write out 1 domain file per processor, and Vislt

Overview Getting Data into Vislt Manual 143

Instrumenting a simulation code

processes al of theindividual domain files to produce a unified picture with contributions
from all of the relevant domains.

Simulation Datafiles

/

processor 3

processor 2

>/

l
processor 1 1[

4 -

kprocr 0 -

Figure 5-1: Simulation writing data files in parallel

_>

Vislt has a distributed architecture which allows various functions to be grouped into
cooperating processes. Vislt's compute engine is particularly relevant when discussing
runtime graphics. The compute engine is responsible for reading data from files,
generating plots from the data, and sending the plots to Visit's viewer where the plot can
be displayed. In short, Vislt's compute engine is the Vislt component that handles all of
the data. Figure 5-2 depicts Vislt’'s compute engine reading datafilesin paralel.

Vislt GUI and Viewer Compute engine Datafiles

processor 3

processor 2

processor 1

processor 0

Figure 5-2: Vislt's compute engine reads data files in parallel and sends data to the viewer
component.

144 Architecture

Instrumenting a simulation code

Vislt users often import their data viafiles that have been written to disk, making data
visualization and analysis a post-processing step. Vislt’'s| i bsi msimulation
instrumentation library can be inserted into a simulation program to make the simulation
act in many ways like a Vislt compute engine. Thel i bsi mlibrary, coupled with some
data access code that you must write and build into your simulation, gives Vislt's data
processing routines access to the simulation’s cal culated data without the need for the
simulation to write files to disk (see Figure 5-3). An instrumented simulation may begin
its processing while periodically listening for connections from an instance of Vislt using
I i bsi mWhen! i bsi mdetects that Vislt wants to connect to the simulation so its data
can bevisualized, | i bsi mloads its dynamic runtime library that contains the Vislt
compute engine's data processing functions. Once the runtime is loaded, your simulation
connects back to Vislt's viewer and requests for plots and data can be made as though your
simulation was aregular Vislt compute engine.

When arequest for data comesin from Vislt's viewer, your smulation is asked to provide
data via some data access code. Data access code consists of a set of callback functions
that your simulation must provide in order to serve datato Vislt. Data access code is
written in the same language as your simulation program and it serves as the “glue” that
allows the runtime to access your simulation’s data so it can be processed and plotted in
Vislt. Though theinitial portion of this chapter illustrates how to integratel i bsi m
routines into your simulation, much of the rest of this chapter will be devoted to writing
data access code.

Vislt GUI and Viewer Instrumented Simulation

(proc&esor 3 g \

e = : : rocessor 2
- = ()

LR . ﬂh' F)roceﬁorl I[IUGTta >
/proceesoro - n‘\ %

data :

(libsi @ (Data access coch
Vislt compute engine | ibrary)

Figure 5-3: Vislt getting data from an instrumented parallel simulation

Architecture 145

Instrumenting a simulation code

3.0

Using libsm

Thefirst step in instrumenting a simulation so it can provide datato Vislt isto add the

I i bsi mlibrary. Thel i bsi mlibrary isresponsible for listening for incoming Vislt
connections, connecting to them, and for dynamically loading the runtime that allows the
simulation to act asa Vislt compute engine. Thel i bsi mlibrary can listen for input from
incoming Vislt instances, establish connectionsto Vislt, and respond to console input or
input from Vislt. As one might imagine, thisimplies that your simulation’s main loop will
need to be changed so it calls critical routinesfrom | i bsi m Restructuring the main loop
will be covered shortly. The code examples herein will start from a simple simulation
skeleton that builds on itself until aworking simulation is created.

3.1 Gettinglibsm

Asof Vislt 2.0, thel i bsi mlibrary comesintwo flavors: SimV1and SmV2. SmV1is
theolder version of | i bsi mandiscovered in previous versions of thismanual. SmV2is
the newer form of | i bsi mand it provides afunction-based API for manipulating data
instead of one based on C-structsasin SimV 1. SimV 2 also includes features not present in
SimV 1 such as support for Adaptive Mesh Refinement (AMR) meshes, Constructive Solid
Geometry (CSG) meshes, materia species, and many more. The remainder of this manual
will target libsim’s SimV 2 interface.

Both versions of libsim are located in the libsim directory, which isinstalled under the
version and platform directories when Vislt isinstaled. There are V1 and V2
subdirectories for SimV1 and SimV 2, respectively. For example, if you are building
against aLinux/Intel version of Vislt 2.0 installed in /usr/local/apps/visit then the full path
to the libsim directory would be: /usr/local/apps/visit/2.0.0/linux-intel/libsim/VV2. The V2
subdirectory containsi ncl ude and | i b directoriesthat give you easy access to the
required C and Fortran include files and static libraries.

Thefilesthat you need in order to instrument asimulation vary depending on the language
that you used to write your simulation.

Language Include files

C/IC++ VisltControlInterface V2.h VisltDatalnterface V2.h

Fortran visitfortransimV 2interface.inc

3.2 Buildingin libsim support

Before getting started, it isimportant to notethat | i bsi mis currently only available on
Linux and MacOS X platforms. A Windows implementation requires additional porting
and has not yet been compl eted.

146

Using libsim

Instrumenting a simulation code

When you write your simulation in C or C++, you must include

VisltControl Interface V2. handVisltDatalnterface V2. hinyour
simulation’s source file. In addition, you must add | i bsi niv2. a to thelist of libraries
against which your program is linked. When your simulation is written in Fortran, you
must also take careto includevi si t f ortransi nV2i nterface. i nc inyour
Fortran simulation code to assure that the compiler knows the names of the functions that
comefrom| i bsi m You must link your Fortran program against both | i bsi niv2. a and
i bsi nv2f. a.

Listing 5-4: Including libsim header file in C-Language simulation.

#i nclude <VisltControl Interface V2. h>
int main(int argc, char **argv)

{

return O;

}
I I

Listing 5-5: Including libsim header file in Fortran-Language simulation.

program nai n

inmplicit none

i nclude “visitfortransi nW2interface.inc”
stop

end

Using I i bsi mon UNIX platforms, such as Linux, will most likely require you to link
your simulation with the dynamic loader library (-Idl) because! i bsi musesthe system’s
dlopen function to dynamically load its runtime library.

3.3 Initialization

This section discusses the changes to the main program that are involved when
instrumenting a simulation code with | i bsi m The following examples are cartoonish
but they show how the main program evolves from something very simple into amain
program that can serve as the skeleton of a ssimulation that can act asa Vislt compute
engine. Once you adapt one of your programsto usel i bsi m it iseasy to use that
program as atemplate for future ssimulations. Additions to the example programsin this
section will be underlined unless otherwise stated.

The C example programs use a struct called si mul at i on_dat a that represents the
simulation’s global state and it could contain other data such as the mesh being simulated.
Thesi mul ati on_dat a struct is used as a proxy for your smulation’s global state and

Using libsim 147

Instrumenting a simulation code

will later be used to show how the simulation state can be passed to data access callback
functions. The following listing shows the contents of thesi nul at i on_dat a struct.

Listing 5-6: siml.c: C-Language simulation example before adding libsim

/* SI MPLE SI MULATI ON SKELETON */
t ypedef struct

{
i nt cycl e;
doubl e tine,;
i nt r unMode;
i nt done;
#i f def PARALLEL
i nt par _rank;
i nt par _si ze;
#endi f

} simul ation_dat a;

void simul ate_one_tinmestep(sinulation_data *sim

{
/* Simulate 1 tinestep. */
}
int main(int argc, char **argv)
{

simul ation_data sim
simul ati on_data_ctor(∼
read_i nput _deck(∼
do
{
simul ate_one_tinmestep(∼
wite vis_dunmp(∼
} while(!simdone);
simul ati on_data_dtor (∼
return O;

331 Setting up the environment and creating a .sim2 file

Thefirst | i bsi mfunctions called when instrumenting a simulation influence the
behavior of | i bsi m s Vi sl t Set upEnvi r onnent function, whichisthefirst
required function that must be called. You may want to call other functions such as

148 Using libsim

Instrumenting a simulation code

Vi sltOpenTraceFile,VisltSetDirectory,orVisltSetOQptions before
calling Vi sl t Set upEnvi ronnent .

Function Description

Vi sl t OpenTraceFil e Open atrace file that contains atrace of all of
SimV2's function calls. Tracefiles are highly
recommended because they contain informa-
tion about every action attempted by libsim
and they are invaluable for determining the
causes of various types of failure such as
when Vislt can’t connect to the simulation.

VisltSetDirectory Set the path to the top level directory where
Visltisinstalled (e.g. /path/to/visitdir). Thisis
the directory that contains the bin/visit launch
script. If you don't call this function, libsim
will use whichever visit executableisin your
path.

Vi sltSetOption Pass a string containing command line argu-
ments to the visit launch script when it is
invoked by Vi sl t Set upEnvi r onnent .
Thisisuseful if you need to passaversion
string or some other arguments to the visit
launch script.

After calling optional functions, the first required function that must be called when
instrumenting asimulationisthe Vi sl t Set upEnvi onnment function. The

Vi sl t Set upEnvi r onnment function adds important visit-related environment
variables to the environment, ensuring that Vislt has the environment that it needs to find
its plug-ins, etc.

Step 2 in instrumenting asimulation isto call the

VisltlnitializeSocket AndDunpSi nFi | e function, which initializes the

I 1 bsi mlibrary and writes out a.smz2 file to your ~/.visit/simulations directory in your
home directory. A .ssm2 fileisasmall text file that contains details that tell Vislt how to
connect to your running simulation. The .sim2 file contains such information as the name
of the computer where your simulation is running, the port that should be used to connect
to the simulation, and the key that should be returned when you successfully connect to
the simulation. The first argument to the

VisltlnitializeSocket AndDunpSi nFi | e functionisthe base namethat will be
used to construct afilename for the .ssim2 file. The name for a.sim2 fileistypicaly the
specified file base with the time that the simulation started appended to it, allowing you to
distinguish between multiple simulations that may be running concurrently. The second
argument is acomment that can be used to further identify your ssmulation. The third
argument contains the directory path to where your simulation was started, though it is

Using libsim 149

Instrumenting a simulation code

mainly reserved for future use. The fourth argument, which is optional, contains the path
and name to the simulation’s input file. The fifth argument, which is also optional,
contains the name of an XML user interface file that Vislt can use to create a custom user
interface for controlling your simulation. The final argument is reserved and you should
pass NULL.

Listing 5-7: sim2.c: C-Language simulation example including libsim initialization

/* SI MPLE SI MULATI ON SKELETON */
#include <VisltControllnterface V2.h>
void simul ate_one_tinmestep(sinulation_data *sim

{
}

int main(int argc, char **argv)

{

/* Simulate 1 tinestep. */

simul ation_data sim
simul ati on_data_ctor(∼

[* Initialize environnent variables. */
Vi sl t Set upEnvi ronnent () ;
[* Wite out .simfile that Vislt uses to connect. */
VisltlnitializeSocket AndDunpSi nFil e("si mane",
"Simulation Comrent", "/path/to/where/sinmwas/started",
NULL, NULL, NULL):

read_i nput _deck(∼

do

{
simul ate_one_tinmestep(∼
wite vis_dunmp(∼

} while(!simdone);

simul ati on_data_dtor (∼

return O;

3.3.2 Parallel initialization

Parallel programs often require global communication to ensure that all processors are
working on the same activity. Thel i bsi mlibrary requires periodic global
communication to ensure that al processors service the same plot requests from VisIt's
viewer process. Using | i bsi min aparallel simulation requires alittle bit of extra setup.
The code in Listing 5-8 differs from the previous code listing in three important ways,
each labelled in the listing using comments: CHANGE 1, CHANGE 2, CHANGE 3,
respectively.

The first change in the code listing adds two broadcast functionsthat | i bsi mwill use
when it needs to broadcast integers or strings. The two callback functions from the code

150

Using libsim

Instrumenting a simulation code

listing can most likely be copied directly into your simulation. Note that the callback
functions are conditionally compiled since they are not needed in a serial simulation.

The second changein Listing 5-8 includes initialization of the MPI library, par _r ank,
par_si ze,and!l i bsi m Thepar _rank and par _si ze integers are members of the
si mul at i on_dat a struct. Once MPI isinitialized, the processor rank and sizeis
gueried and stored in par _r ank and par _si ze so they can be used to initialize

I i bsi maswell aslater for control flow. Various routines that we'll add in future code
exampleswill usethe par _r ank, and par _si ze integersfor control flow because
processor 0 needs to behave alittle differently from the rest of the processors because it
communicates with Vislt's viewer. Note that the broadcast functions defined in the first
change are registered with libsim, using Vi sl t Set Br oadcast | nt Functi on and
Vi sl t Set Broadcast Stri ngFuncti on, sol i bsi mcan broadcast integers and
strings among processors. Once the broadcast callbacks are installed, par _r ank and
par_si ze areusedtotell | i bsi mhow many processors there are and whether the
simulationisparallel usingtheVi sl t Set Par al | el andVi sl t Set Par al | el Rank
functions,

Listing 5-8: sim2p.c: C-Language simulation example including parallel libsim initialization

/* SI MPLE PARALLEL SI MJLATI ON SKELETON */

#i nclude <VisltControl Interface V2. h>

#i ncl ude <mpi . h>

void sinmul ate_one_tinmestep(sinulation_data *sim

{

}

[* CHANGE 1 */

#i f def PARALLEL

static int visit broadcast int callback(int *value, int sender)

/* Simulate 1 tinestep. */

{
return MPl Bcast (value, 1, MPI | NT, sender, MPI _COVM WORLD)
b
static int visit _broadcast_string callback(char *str, int |en,
int sender)
{
return MPI _Bcast(str, len, MPI CHAR, sender, MPI _COVM WORLD)
b
#endi f

int main(int argc, char **argv)
{

simul ation_data sim

simul ati on_data_ctor(∼

/* Initialize environnent variables. */
Vi sl t Set upEnvi ronment () ;

/* CHANGE 2 */

#i f def PARALLEL
[* Initialize MPI */

Using libsim 151

Instrumenting a simulation code

MPl _Init(&rgc, &argv):
MPI _Comm rank (MPI_COVM WORLD, &sim par_rank):
MPI _Comm size (MPI _COMM WORLD, &sim par_size):

[* Install callback functions for global comrunication. */
Vi sl t Set Broadcast I nt Function(visit_broadcast _int_call back):
Vi slt Set Broadcast Stri ngFunction(visit_broadcast _string_call back);
[* Tell libsimwhether the simulation is parallel. */
VisltSetParallel (simpar_size > 1);
VisltSetParall el Rank(sim par_rank):

#endi f

[* Wite out .simfile that Vislt uses to connect. Only do it
* _on processor 0.

*/

/* CHANGE 3*/

if(simpar_rank == 0)

{

VisltinitializeSocket AndDunpSi nFi |l e("si mane”,

"Simulation Comment"”, "/path/to/where/simwas/started",
NULL, NULL, NULL);

3

read_i nput _deck(&si n;

do

{

simul ate_one_tinmestep(∼
wite vis_dunmp(∼

} while(!simdone);

simul ati on_data_dtor(&sin;

#i f def PARALLEL
MPlI _Finalize():
#endi f

return O;

34 Restructuring the main loop

Given the example code from the previous example, the do. . whi | e loop that serves as
the ssmulation’s main loop can be separated out into a new function called mai nl oop. It
ispossibleto add callsto | i bsi minto an existing simulation main loop using polling but
it is not as clean as restructuring the main loop.

34.1 Creating a mainloop function

Moving thedo. . whi | e loop into a separate mai nl oop function will help in the next
stage where additional | i bsi mfunctionswill be called. If your simulation does not have
awell-defined function for simulating one time step, asin the previous example code, then

152

Using libsim

Instrumenting a simulation code

it is strongly recommended that you refactor your simulation so that code to simulate 1
time can be called from mai nl oop using either asingle function or asmall block of
code. The next examples assume that the simulation provides afunction called:

si mul at e_one_ti mest ep that can be called over and over again to perform one
cycle of the ssimulation.

Listing 5-9: sim3.c: C-Language simulation example with a mainloop function.

/* SI MPLE SI MULATI ON SKELETON */
#i nclude <VisltControl Interface V2. h>
void simul ate_one_tinmestep(sinulation_data *sim

{
}

/* Simulate 1 tinestep. */

voi d mai nl oop(sinulation _data *sim

{

do
{

sinmul ate one tinestep(sim;
wite vis dunp(sim:
} while(!sim>done);

I3

int main(int argc, char **argv)
{

simul ation_data sim

simul ati on_data_ctor(∼

/* Initialize environnent variables. */
Vi sl t Set upEnvi ronment () ;
/* Wite out .sinR file that Vislt uses to connect. */
VisltinitializeSocket AndDunpSi nFi |l e("si mane",
“Simul ati on Comment”, "path/to/where/simwas/started”, NULL,
NULL, NULL);

/* Read input problem setup, geonetry, data. */
read_i nput _deck(∼

/[* Call the mmin | oop. */
mai nl oop(&sim ;

simul ati on_data_dtor (∼
return O;

3.4.2 Adding libsim functionsto mainloop

Now that the main loop of the program has been extracted from the main piece of the
simulation, we can perform an even larger change on the mai nl oop function. After

Using libsim 153

Instrumenting a simulation code

completing these changes, you will have the first simulation in the series that will be able
to accept Vislt connections. It will take more changes before the simulation can provide
any datato Vislt. The following code example keeps only thedo. . whi | e loop and the
call tosi mul at e_one_t i mest ep; everything elseis new. The structure of the

mai nl oop function will be very similar between simulations since most of the code is
devoted to detecting input from Vislt using | i bsi mand doing the right thing based on
that input.

Listing 5-10: sim4.c: C-Language simulation example with fully instrumented mainloop function.

voi d mai nl cop(sinulation_data *sim

{

int blocking, visitstate, err = 0;

do

{
bl ocking = (sim>runMbde == VISIT_SIMMODE RUNNING ? 0 : 1;
/* Get input fromVislt or tineout so the sinulation can run. */
visitstate = VisltDetectlnput(blocking, -1);

/* Do different things depending on the output from
Vi sltDetectlnput. */
if(visitstate <= -1)

{
fprintf(stderr, "Can't recover fromerror!\n");
err =1,
}
else if(visitstate == 0)
{
/* There was no input fromVislt, return control to sim */
sinmul ate_one_tinestep(sim;
}
else if(visitstate == 1)
{
/* Vislt is trying to connect to sim */
i f(VisltAttenpt ToConpl et eConnection())
fprintf(stderr, "Vislt connected\n");
el se
fprintf(stderr, "Vislt did not connect\n");
else if(visitstate == 2)
{
/* Vislt wants to tell the engi ne sonething. */
si m >runMde = VI SI T_SI MMODE_STOPPED;
i f(!VisltProcessEngi neConmand())
{
/* Disconnect on an error or closed connection. */
Vi sl t Di sconnect () ;
/* Start running again if Vislt closes. */
si m >runMde = VI SI T_SI MMODE_RUNNI NG,
}
}

154 Using libsim

Instrumenting a simulation code

} while(!si m>done && err == 0);

There are severa functionsfrom| i bsi mthat are called in the new mai nl oop function.
Thefirst| i bsi mfunction that we call isthe Vi sl t Det ect | nput function, which
listens for inbound Vislt connections on a port that was allocated when | i bsi mwas
initialized. The Vi sl t Det ect | nput function can be called so that it blocks
indefinitely, or so that it times out after a brief period. When the simulation starts up,

Vi sl t Det ect | nput iscalled in non-blocking mode so that it times out. When a
timeout occurs, the Vi sl t Det ect | nput function returns zero and we call the

si mul at e_one_ti mest ep function. Sincethe Vi sl t Det ect | nput function will
continue to time out until Vislt connectsto it, this augmented main loop allows the
simulation to keep iterating, while still periodically listening for inbound Vislt
connections.

- When Vi sl t Det ect | nput returns
one, there is an inbound Vislt connection
: _ to which the smulation should try and
T T connect. In this situation, we call the
:1:-:* :.::-Tll!ﬁ,-- ¥ 15:16:06 2010 VisltAtt en‘pt TOCOprl et eConne
e e B ct i on function, which isresponsible
Comement DemoniiTATES CFEATEn CUSTDM Comemands for two crucial actions. Thefirst actionis
ik At ek to dynamically load the smulation
Vish status runtime library, which is the piece of the
Sasres) Lt cathe) EDincoanet puzzle that allows the simulation to
perform compute engine operations.
After loading the runtime, the
Vi slt Att enpt ToConpl et eConne
- simp — ct i on function tries to connect back to
Viglt's viewer. In the event of a
successful connection, the viewer and the

e Simulacions

Senplatheey | b 12 cn dantessiss. lnl, gov H I

Mok gt Sarip chirts Comtrahy |

Lomymgrads

i i Enabie time ranging simulation will be connected and the
simulation will appear in the GUI's
. - 2o Compute Engines and Simulation

windows (see Figure 5-11).

e When Vi sl t Det ect | nput returns
two, Vislt'sviewer is sending commands
Pos) (Dismess to generate plots to the simulation. The
simulation can handle commands from
the viewer ssimply by calling the
Vi sl t ProcessEngi neComrand
function. The Vi sl t ProcessEngi neComrand function reads the commands coming
from the viewer and uses them to make requests of the runtime, which ends up requesting
and processing the data returned from your data access code. If the

Figure 5-11: Simulation window

Using libsim 155

Instrumenting a simulation code

Vi sl t ProcessEngi neComrand function fails for any reason, it usually means that
either Vislt quit or the communication link between Vislt and the simulation was severred.
When the simulation can no longer communicate with Vislt, it isimportant for it to call
libsims VisltDi sconnect function. TheVi sl t Di sconnect function resets
I i bsi msoitisready to once again accept a new incoming Vislt connection. Note that
after calling Vi sl t Di sconnect , we also set ther unMode variable to ensure that the
simulation begins to again run autonomously.

3.4.3 Setting up mainloop for a parallel simulation

In Vislt's parallel compute engine, only the first processor, processor 0, communicates in
any way with Vislt's viewer. When requests for plots come in, processor 0 broadcasts the
requeststo all of the other processors so al can begin working on the request. Instead of
caling Vi sl t ProcessEngi neCommrand directly in aparallel simulation, you will
have to add code to ensure that al worker processors also call

Vi sl t ProcessEngi neCommand when needed. Listing 5-12 shows how instead of
calling Vi sl t ProcessEngi neComrand directly, you can cal it and broadcast the
appropriate cues to other processors, ensuring they also process input from Vislt's
viewer. Note that command communication also requires calling the
VisItSetWorkerProcessCallback function and registering a worker process
callback to be used in command communication.

Listing 5-12: sim4p.c: C-Language simulation example with fully instrumented parallel mainloop
function.

#define VI SIT_COMVAND PROCESS 0
#define VI SIT_COMVAND SUCCESS 1
#define VISIT_COVMVAND FAI LURE 2

/* Hel per function for ProcessVi sltConmand */
static voi d BroadcastWorkerCommand(i nt *conmand)

{
#i f def PARALLEL

MPI _Bcast (conmand, 1, MPI _INT, 0, MPI_COVM WORLD);
#endi f
r
/* Cal |l back involved in command comruni cation. */void
WorkerProcessCallback()

{

int command = VI SIT COWAND PROCESS;
BroadcastWorkerCommand(&conmand) ;

I3

[* Process commands fromviewer on all processors. */
int ProcessVisltCommand(sinmulation _data *sim

{

int conmand;
if (sim>par rank == 0)

{

int success = VisltProcessEngi neCommand() :
if (success)

156

Using libsim

Instrumenting a simulation code

,',»‘

conmand =
VI SI T_COWWAND SUCCESS;
Br oadcast WworkerConmand(& omrand
}) return 1,
e

| se
L
conmmand = VISIT COWAND FAI LURE;
BroadcastWorkerCommand(& omand)
, return 0;
L
L
el se
L
/* Note: only through the WorkerProcessCallback cal | back
* above can the rank 0 process send a VISIT _COVWAND PROCESS
* instruction to the non-rank O processes. */
while (1)
L
BroadcastWorkerCommand(& omand)
; switch (conmand)
L
case VISI T COMVAND PRCCESS:
Vi sl t ProcessEngi neConmand() ;
br eak:
case VISIT COMVAND SUCCESS:
return 1:
case VISIT COMVAND FAI LURE:
return 0;
L
L
L
return 1;

r

/* New function to contain the progranis main |oop. */
voi d mai nl oop(sinul ation_data *sim

{
i nt blocking, visitstate, err = 0;
do
{
bl ocking = (sim>runMde == VISIT_SIMMODE RUNNING ? 0 : 1;
/[* Get input fromVislt or tineout so the sinulation can run. */
if(sim>par_rank == 0)
visitstate = VisltDetectlnput(blocking, -1);:
MPI _Bcast(visitstate, 1, MPI _INT, 0, MPI_COVM WORLD) ;
/* Do different things depending on the output from
Vi sltDetectlnput. */
if(visitstate >= -5 && visitstate <= -1)
{
fprintf(stderr, "Can't recover fromerror!\n");
err =1,
Using libsim 157

Instrumenting a simulation code

}
else if(visitstate == 0)
{
/* There was no input fromVislt, return control to sim */
simul ate_one_tinmestep(sin;
}
else if(visitstate == 1)
{
/* Vislt is trying to connect to sim */
i f(VisltAttenpt ToConpl et eConnection())
{
fprintf(stderr, "Vislt connected\n");
VisItSetWorkerProcessCallback(WorkerProcessCallback);
}
el se
fprintf(stderr, "Vislt did not connect\n");
}
else if(visitstate == 2)
{
/* Vislt wants to tell the engine sonething. */
si m >runMde = VI SI T_SI MMODE_STOPPED;
if(!ProcessVisltConmand(sin)
{
/* Di sconnect on an error or closed connection. */
Vi sl t Di sconnect () ;
/* Start running again if Vislt closes. */
si m >runMde = VI SI T_SI MMODE_RUNNI NG;
}
}

} while(!si m>done && err == 0);

3.5 Usinglibsim in a Fortran simulation

So far, the examplesfor using | i bsi mhave been expressed in the C programming
language. It is also possible to instrument Fortran simulations so they can serve their data
up to Vislt. In SimV 2, the function calls for instrumenting a Fortran simulation are nearly
identical to the function calls used for C simulations. This subsection will list the entire
code skeleton for alibsim-instrumented Fortran simulation since the transitions that
evolved a simple program into one that can connect to Vislt have already been
demonstrated in C. The principles for instrumenting a Fortran program are the same. If
you want to inspect the intermediate steps involved in converting a simple Fortran
simulation program, examine the sample programs that accompany this book.

The primary source of differences between the following code listing and the code in
Listing 5-10 result from Fortran’s treatment of string variables. Strings are not always
null-terminated in Fortran asthey arein C, so any | i bsi mfunction that takes string
arguments will require the length of each string argument to be passed as well. The length

158

Using libsim

Instrumenting a simulation code

argument immediately follows any string argument in the argument list of al i bsi m
function.

The Fortran interfaceto | i bsi mdiffersin another significant way; it requires certain
functions to be defined in order to link successfully. Thel i bsi mlibrary uses callback
functions, or functions that must be provided by your simulation, in order to perform
certain operations. Since the Fortran programming language lacks pointers, it is not
possible to pass the address of afunction that will perform acertain actionto | i bsi m
The Fortran interfaceto| i bsi mcalled | i bsi nf, getsaround this limitation by
registering internal callback functions, which reference Fortran functions that must be
provided by your simulation. The data access functions requried to pass simulation datato
the libsim runtime are handled using the same method, thus instrumenting a Fortran
simulation initially requires more steps than instrumenting a C simulation. The number of
steps to instrument simulations in either language is ultimately the same.

Listing 5-13: fsim4.f: Fortran language simulation example with fully instrumented mainloop

function.
C ___
¢ Program nmain
c
C ___

program nai n

implicit none

i nclude "visitfortransi nW2i nterface.inc"
ccc | ocal vari abl es

i nteger err

err = visitsetupenv()

err = visitinitializesim"fsimd", 5,

"Fortran prototype sinulation connects to Vislt", 46,
"/ no/useful /path", 15,

VI SI T_F77NULLSTRI NG VI SI T_F77NULLSTRI NGLEN,

VI SI T_F77NULLSTRI NG VI SI T_F77NULLSTRI NGLEN,

VI SIT_F77NULLSTI RNG VI SI T_F77NULLSTRI NGLEN)

cal I mainl oop()

st op

end
C ___
¢ nmai nl oop
C ___

subrouti ne mai nl oop()
inmplicit none
i nclude "visitfortransi nW2interface.inc"
ccc | ocal vari abl es
integer visitstate, result, runflag, blocking

c mai n | oop
runflag = 1
do 10

Using libsim 159

Instrumenting a simulation code

i f(runflag.eq.1) then

bl ocking = 0
el se

bl ocking = 1
endi f

visitstate = visitdetectinput (bl ocking, -1)

if (visitstate.lt.0) then
goto 1234
el seif (visitstate.eq.0) then
call sinulate_one_tinestep()
el seif (visitstate.eq.1l) then
runflag = 0
result = visitattenptconnection()
if (result.eq.1) then
wite (6,*) "Vislt connected!
el se
wite (6,*) "Vislt did not connect!
endi f
el seif (visitstate.eq.2) then
runflag = 0
if (visitprocessengi necommand().eq.0) then
result = visitdisconnect()
runflag = 1
endi f
endi f
10 conti nue
1234 end

subroutine simulate_one_tinmestep()
c Sinulate one tine step

wite (6,*) "Sinmulating tine step

call sleep(1)

end

The above code listing lists the functionsfrom | i bsi mv2f that must be called from the
program’s mai n function and main loop for a serial simulation. When instrumenting a
Fortran ssimulation using | i bsi nV2f , you must define the following functions in order
to link your program successfully:

Required subroutine/function Argument types
subroutine vistcommandcallback (cmd, lcmd, intdata, character*8 cmd,
floatdata, stringdata, Istringdata) stringdata

integer lemd,
Istringdata, intdata

real floatdata

integer function visitbroadcastintfunction(value, sender) integer value, sender

160

Using libsim

Instrumenting a simulation code

Required subroutine/function Argument types

integer function visitbroadcaststringfunction(str, Istr, sender) | character*8 str
integer Istr, sender

subroutine visitworkerpr ocesscal lback ()

These functions are primarily for using | i bsi mwith aparallel ssmulation but they must
always be defined. Extending a parallel Fortran simulation will be covered shortly. In
addition, there are functions related to data access code that must be defined in order to get
your Fortran simulation to link successfuly. Look at thef si nd. f source code file for
examples of which functions must also be defined. Those additional functions will be
covered later in this chapter.

3.6 Usinglibsimin aparallel Fortran ssimulation

A parallel Fortran simulation’s mai nl oop function should look very similar to its serial
counterpart in terms of how code is organized. Once you have adapted your simulation so
it can be instrumented with | i bsi m it is possible to make further changes that allow
each processor to serve datato Vislt in parallel. There are many changes that need to
happen in order to instrument a parallel simulation so the process will be broken into
stages. The changes begin with telling Vislt the number of processors and the rank of the
current processor within the group beforethecall tothevi sitinitiali zesim
function. You can provide thisinformation to Vislt by calling MPI’s MPI _ COVM_RANK
and MPI _COWM _SI ZE functions and then passing the resulting rank and size datato the
visitsetparal |l el andvi sitsetparall el rank functions. Once the rank and
sizedatahave been givento| i bsi m the next changeisto ensure that only the master, or
rank zero, processcallsthevi si tinitial i zesi mfunctionfroml i bsi m Only the
master process should call thevi si ti ni ti al i zesi mfunction to ensure that only one
“.sim2” fileis created.

Listing 5-14: fscalarp.f: Fortran language simulation example for parallel initialization.

program nai n
inmplicit none
i nclude "visitfortransi mv2i nterface.inc"
include "nmpif.h"
ccc | ocal vari abl es
i nteger err
ccc PARALLEL state conmon bl ock
integer par_rank, par_size
common /PARALLEL/ par_rank, par_size
save /PARALLEL/

Using libsim 161

Instrumenting a simulation code

call MPI _INT(err)

c Determne the rank and size of this MPI task so we can tell
c Vislt’s libsimabout it.

call MPI _COVM RANK(MPI _COMM WORLD, par_rank, err)

call MPI _COW S| ZE(MPI _COMM WORLD, par_size, err)

if(par_size.gt.1) then

err = visitsetparallel (1)
endi f
err = visitsetparallelrank(par_rank)

err = visitsetupenv()
c Have the master process wite the simfile.

if(par_rank.eg.0) then

err = visitinitializesin("fscal arp", 8,

"Denonstrates scal ar data access function", 40,
"/ no/useful /path", 15,
VI SI T_F77NULLSTRI NG, VI SI T_F77NULLSTRI NGLEN,
VI SI T_F77NULLSTRI NG, VI SI T_F77NULLSTRI NGLEN)

endi f
call mainl oop()
call MPI _FINALIZE(err)

stop
end

The next step in instrumenting a paralel Fortran simulation isto change the mai nl oop
function. Thefirst change that you must make is to ensure that only the master process
callsvi si t det ect i nput . Remember that only the master processtalksto Visit's
viewer processso thevi si t det ect i nput function should not be called by worker
processes. However, the workers need to know the instructions that came from the viewer
so we must insert an MPI broadcast function to ensure that all processes get the value
sent from the viewer to the master process. In addition the

Vi si t processengi neconmmand function must be exchanged for a function that can
call vi si t processengi necomrand on all processes. For now, let’s call that new
function pr ocessvi si t conmand.

Listing 5-15: fscalarp.f: Fortran language simulation example for parallel mainloop function.

subrouti ne mai nl oop()

inmplicit none

include "nmpif.h"

i nclude "visitfortransi mv2i nterface.inc"
ccc functions

162 Using libsim

Instrumenting a simulation code

Cccc

Cccc

Cccc

i nt eger processvi sitcomuand

| ocal vari abl es

integer visitstate, result, blocking, ierr
SI MSTATE common bl ock

i nteger runflag, sintycle

real sintine

comon / SI MSTATE/ runfl ag, si ntycl e, sinmine
save / S| MSTATE

PARALLEL state conmon bl ock

i nt eger par_rank, par_size

conmon /PARALLEL/ par_rank, par_size

mai n | oop
runflag = 1
sincycle = 0
simime =0

do 10
if(runflag.eq.1) then
bl ocking = 0
el se
bl ocking = 1
endi f

c Detect input fromVislt on processor 0 and then broadcast
c the results of that input to all processors.

10
1234

if(par_rank.eq.0) then
visitstate = visitdetectinput(blocking, -1)
endi f
call MPI BCAST(visitstate, 1, MPl | NTEGER, O,
MPI _COMM WORL D, i err)

if (visitstate.lt.0) then
goto 1234
el seif (visitstate.eq.0) then
call sinulate_one_tinestep()
el seif (visitstate.eq.1l) then
runflag = 0
result = visitattenptconnection()
if (result.eq.1) then
wite (6,*) "Vislt connect ed!
el se
wite (6,*) "Vislt did not connect!
endi f
el seif (visitstate.eq.2) then
runflag = 0
if (processvisitconmand().eq.0) then
result = visitdisconnect()
runflag = 1
endi f
endi f
conti nue
end

Using libsim

163

Instrumenting a simulation code

Now that you have changed the mai nl oop function it istime to define the

processvi si t command function. The pr ocessvi si t command function is used
by themai nl oop function asareplacement for thevi si t pr ocessengi neconmand
function. The new pr ocessvi si t command function must call the

Vi si t processengi necomrand function and it must do so in away that ensures the
function is called on al processors. Since the pr ocessvi si t comrand functionis
completely new, you will probably be able to paste it into your simulation with few

changes.

Listing 5-16: fscalarp.f: Fortran language simulation example for parallel processvisittcommand

CCccC

2345

function.

i nteger function processvisitconmand()
inmplicit none

i ncl ude "npif.h"

i nclude "visitfortransi nW2i nterface.inc"
PARALLEL state common bl ock

i nt eger par_rank, par_size

common / PARALLEL/ par_rank, par_size

i nteger conmmand, e, dol oop, success, ret
i nteger VI SI T_COVMAND_ PROCESS

i nteger VISIT_COMVAND SUCCESS

i nteger VISIT_COWAND FAI LURE

paraneter (VISI T _COMWAND PROCESS = 0)
paraneter (VISI T _COMWAND SUCCESS = 1)
paraneter (VI SI T_COMVAND FAI LURE = 2)

i f(par_rank.eqg.0) then
success = Vi sitprocessengi neconmand()

i f(success.gt.0) then
conmand = VI SI T_COMVAND SUCCESS

ret =1
el se
command = VI SI T_COMVAND FAI LURE
ret =0
endi f
cal I MPI _BCAST(conmmand, 1, MPl _| NTEGER, 0, VPl _COVW WORLD, e)
el se
doloop =1
cal I MPI _BCAST(conmmand, 1, MPl _| NTEGER, 0, VPl _COVW WORLD, e)

i f(command. eq. VI SI T_COMWVAND_PRCCESS) t hen
success = Vi sitprocessengi neconmand()

el sei f (command. eq. VI SI T_COMVAND_SUCCESS) t hen
ret =1
doloop = 0

el se

164

Using libsim

Instrumenting a simulation code

ret =0
doloop =0
endi f
i f(dol oop. ne.0) then
goto 2345
endi f
endi f
processvi sitcomand = ret
end

The aterations to the code that have been listed thus far are nearly enough to compl ete the
changesrequired for aparallel Fortran ssmulation to usel i bsi m The main program and
the mai nl oop function have been changed to support the extra processing that needs to
happen to ensure that all processors properly receive instructions from Vislt's viewer.
However, there are some broadcast callback functions that must now be implemented to
ensure that | i bsi mcan communicate with all processors. The callback functions:

vi si t broadcastintfunction,visitbroadcaststringfunction,and

Vi si t workerpr ocesscal | back have to date been stub functions that did not do any
real work. When you instrument a parallel Fortran simulation, those callback functions
need to perform broadcasts so | i bsi mcan properly communicate with al processors.

Listing 5-17: fscalarp.f: Fortran language simulation example for parallel broadcast functions.

C __
c visitbroadcastintfunction
C __
i nteger function visitbroadcastintfunction(val ue, sender)
inmplicit none
include "npif.h"
i nt eger val ue, sender
integer |ERR
call MPI_BCAST(val ue, 1, MPl _| NTEGER, sender, MPl _COVM WORLD, i err)
vi sitbroadcastintfunction = 0
end
C __
c visitbroadcaststringfunction
C __

i nteger function visitbroadcaststringfunction(str, Istr,
sender)

inmplicit none

include "npif.h"

character*8 str

i nteger Istr, sender

i nteger |IERR

call MPlI _BCAST(str,lstr, MPI CHARACTER, sender ., MPI _COVM WORL D,
. ierr)

vi sitbroadcaststringfunction = 0

end

Using libsim 165

Instrumenting a simulation code

subrouti ne vi sitworkerprocesscal | back ()

inmplicit none

i ncl ude "npif.h"

integer c, ierr, VISIT COWAND PROCESS

paraneter (VISI T COMWAND PROCESS = 0)

c = VISIT COMVAND PROCESS

call MPI _BCAST(c, 1, MPl I NTEGER, 0, MPI _COW WORLD, i err)
end

After making all of these changes, your parallel Fortran simulation should be ready to run
for the first time as an application to which Vislt can connect. You will not be able to
extract any data from your simulation just yet but you can begin to run connected to Vislt
and once you have that working you can begin to expose your datato Visit.

3.7 Running an instrumented simulation

Onceyou'veadded | i bsi mfunctions to your simulation and created amai nl oop
function capabl e of connecting to Vislt, you can run your modified simulation. The current
I i bsi mimplementation usesthevi si t command in your path to determine where it
will find thel i bsi mruntime library. Thel i bsi mruntime library islinked to its
dependent Vislt libraries and has an awareness of their location set via -rpath. So,
assuming | i bsi misableto locateits runtime library, the other Vislt libraries on which it
depends should load without issues. If you use aLinux version of Vislt 2.0.0 installed in
lusr/local/apps/visit then use the following commandsto ensurethat | i bsi mcan find the
I i bsi mruntime library. However, this should only be necessary if Vislt is not in your
path.

Set VISIT to the directory where a version of Vislt is intalled
setenv VISIT /usr/local/apps/visit/2.0.0/1inux-intel
env LD LI BRARY_PATH=$VI SI T/1ib VI SI TPLUG NDI R=$VI SI T/ pl ugi ns ./sim

If you use adifferent version of Vislt or run Vislt on a platform other than Linux, make the
appropriate substitutionsin the VISIT environment variable beforetrying to run. Thisisan
instance where you could also call Vi sl t Set Di r ect ory in your simulation, passing
/usr/local/apps/visit to make the proper Vislt environment be detected.

3.8 Connecting to an instrumented simulation from Vislt

Once you've successfully launched your simulation, you can attempt to connect to it using
Vislt. Open aterminal window and run Vislt. When Vislt comes up, open the File

selection window and browse to ~/.visit/simulations, the directory where .sim2 files are
stored. You should see afilein that directory with a.sim2 file extension. The .sim2 filewas

166

Using libsim

Instrumenting a simulation code

created by your simulation when it started and called the
VisltlnitializeSocket AndDunpSi nFi | e functionfrom! i bsi m The.sim2
file contains al of the information that Vislt needs to connect to your simulation. If you
open the .sm2 filein Vislt's Main window, Vislt will initiate contact with your
simulation.

If Vislt is unable to connect to your simulation, you might see error messages like the
following from your simulation:

Sinmulating tinme step
Sinmulating tinme step
Vislt did not connect
Sinmulating tinme step
Sinmulating tinme step

Error messages such as those above appear in the terminal window where your simulation
was launched. The most common problem when Vislt cannot connect to asimulation is
that the simulation runtime library could not be loaded. This occurs when the environment
isnot set, usually dueto afailureby | i bsi mto automatically detect the Vislt
environment. This happens most oftenif thevi si t command isnot in your path. You can
find out more about this type of failure by examining | i bsi mtracefiles. In the event that
I i bsi mcannot detect the Vislt environment, you can set it explicitly using
LD_LIBRARY_PATH and VISTPLUGINDIR.

At this stage in instrumenting your simulation, if it was able to successfully create a
connection to Vislt then you will see the name of your simulation in the Compute
engines window and the Simulations window.

4.0 Writing data access code

If you have made it thisfar then you probably have a simulation that has been restructured
tousel i bsi m Once asimulation has been instrumented using | i bsi m it should be
possible for Vislt to connect to it. Adding the code to alow Vislt to connect to your
simulation isonly the first part of instrumenting your simulation. The next phasein
instrumenting your simulation code is adding data access code to your simulation so the
simulation runtime library can access your simulation’s data.

Writing data access code is much like writing a database reader plug-in. It all startswith
writing afunction to provide metadata to Vislt so that it knows the names of the meshes
and variables that are available for plotting. After your simulation is capable of telling
Vislt about its variables, the next step isto write functions that can pass your mesh or data
arraysto Vislt so they can be used in plots. If your datais not in aformat that Vislt readily
supports, you can create amore Vislt-friendly representation of the datain the data access
functions and hand it off to Vislt.

Writing data access code 167

Instrumenting a simulation code

4.1 The Vislt Data I nterface

Vislt relies on the Vislt Data Interface (VDI), a C header file containing the prototypes of
the functions that can be called to allocate and manipulate data objects that you pass back
to Vislt. These data objects contain references to your ssmulation data and are used to
construct the data structures that Vislt usesto plot your data.

It isimportant to note some significant differences between SimV1 and SimV 2 in case you
are converting aSimV1 simulation to use SimV2. In SimV1, the VDI consisted of a set of
C structsthat you would allocate, fill in, and pass back to Vislt. In SimV 2, the structs have
been taken away and replaced with a set of functions for setting and getting properties on
the various data objects. This change eliminates a classic problem where Vislt would crash
when users did not properly fill out the fields of the C structure. SimV 2 functions are also
redirected to their real implementation which is dynamically loaded from the Simv2
runtime library. This means that the data objects are more free to change and improvein
different versions of Vislt without affecting the client ssmulation or requiring that it relink
with anew SimV2 library.

The VDI C-Language header fileiscalled Vi sl t Dat al nt er f ace_V2. h and it
defines the types and functions that are used when creating objects that pass datato Visit.
The header fileisinstalled with the binary Vislt distribution. If aLinux version of Vislt
2.0.0 wasinstalled in /usr/local/apps/visit then the header file would be located in
Jusr/local/apps/visit/2.0.0/linux-intel/include/visit/libsim/VV2/include. Of course, the actual
path depends on where Vislt was installed, the version of Vislt that wasinstalled, and the
platform.

If you are writing your simulation in Fortran thenthe Vi sl t Dat al nt erface_V2. h
header file will be of no consequence to you. Everything you need to instrument a Fortran
simulation codeislocatedinvi si t f ortransi mV2i nt er f ace. i nc, the samefile
that you've aready used to instrument your simulation so far. Fortran simulations follow
the same paradigm as C simulations but call functions with slightly shorter names since
function names in Fortran are often limited to 31 characters. When possible, the function
names are either the same asin C, albeit with underscores‘ ' removed, and use all lower-
case |etters.

4.2 How data access functions are called

Vislt data access functions are registered with libsim using special callback registration
functions, definedin Vi sl t Control | nt erf ace_V2. h. Thereis one callback
registration function per data access function. In the C version of libsim, you pass the
function pointer to be called when a particular data access callback function is needed.
You may also pass user-defined data that will be passed to the data access callback
function so the function can be aware of your application’s data without using global
variables. Calling these functions is not necessary when writing Fortran simulations

168

Writing data access code

Instrumenting a simulation code

because they are called already in the si mv2f library, which imposes a requirement for
specific data access callback names: vi si t get net adat a, vi si t get nesh, etc.

Function Descripion

VidltSetGetM etaData Installs callback function that returns simula-
tion metadata.

VisltSetGetMesh Installs a callback function that returns mesh
data.

VidltSetGetM aterial Installs a callback function that returns mate-
rial data.

VisltSetGetSpecies Installs a callback gunction that returns spe-
cies data.

VidltSetGetVariable Installs a callback function that returns vari-

able data (scalars, vectors, tensors, and so on).

VisltSetGetMixedVariable

Installs a callback function that returns mixed
variable data.

VidltSetGetCurve

Installs a callback function that returns curve
data.

VisltSetGetDomainList

Installs a callback function that returns a
domain list.

VisltSetGetDomainBound-
aries

Installs a callback function that returns
domain boundary information.

Installs a callback function that returns
domain nesting information.

VisltSetGetDomainNesting

When Vislt opens the .sim2 file corresponding to your running simulation, Vislt knows
that the data will come from a simulation because the .sim2 file is opened by the SimV2
database reader plug-in. The SimV2 plug-in is a special Vislt database reader plug-in that
uses the functions in the SimV 2 runtime library to access data from your simulation.
When the SmV 2 runtime is loaded into your simulation and Vislt tells the simulation to
make a plot, the request ends up in the SimV 2 database reader plug-in. When the SimV 2
plug-in wants to read metadata, for example, it invokes your simulation’s metadata
callback function to retrieve metadata. Once your function returns a populated metadata
object, created by calling SimV 2 functions, the SimV 2 plug-in transcribes the metadata
from your metadata object into the avt Dat abaseMet aDat a object that Vislt uses.
Other data access callbacks follow the same pattern.

Writing data access code 169

Instrumenting a simulation code

4.3 Making data access functions available

The previous sections have established the importance of data access callback functions
and the functions that register them. Now, it istime to see how and when the data access
callback functions are registered. Since the data access callback function are ultimately
used by the SimV 2 runtime library, they cannot be registered until after Vislt connects to
your simulation since that is when the SimV 2 runtime is loaded. Consequently, the
functions that register data access callback functions must be called after a successful call
toVi sl t Att enpt ToConpl et eConnect i on. Inorder for your simulation to return
data, you must register, at aminimum, the callback functions for returning metadata. In
this example, note how Vi sl t Set Get Met aDat a iscalled after a successful call to

Vi sl t Att enpt ToConpl et eConnecti on.

Listing 5-18: sim5.c: C-Language example for making a data access function available.

#i ncl ude <Vi sltDatal nterface V2. h>

visit _handl e
Si ncet Met aDat a(voi d *cbdat a)

{
visit _handle nd = VI SI T_| NVALI D HANDLE;
simul ati on_data *sim = (sinmulation_data *)cbdat a;
/* Create nmetadata with no variables. */
if(Vislt_Simulati onMetabData_al | oc(&rd) == VI SI T_CKAY)
{
[* Fill in the netadata. */
}
return nd,
}
voi d mai nl oop(sinulation_data *sim
{
int blocking, visitstate, err = 0;
do
{

bl ocking = (si m>runMbde == VISIT_SIMMODE RUNNING ? 0 : 1;
/* Get input fromVislt or tineout so the sinulation can run. */
visitstate = VisltDetectlnput(blocking, -1);

/* Do different things depending on the output from
VisltDetectlnput. */
if(visitstate <= -1)

{
fprintf(stderr, "Can't recover fromerror!\n");
err =1,

}

else if(visitstate == 0)

{

170

Writing data access code

Instrumenting a simulation code

/* There was no input fromVislt, return control to sim */
simul ate_one_timestep(sim;

}
else if(visitstate == 1)
{
/* Vislt is trying to connect to sim */
i f(VisltAttenpt ToConpl et eConnection())
fprintf(stderr, "Vislt connected\n");
[* Reqgister data access call backs */
Vi sltSet Get Met aDat a(Si nGet Met aData. (void*)sim:
}
el se
fprintf(stderr, "Vislt did not connect\n");
}
else if(visitstate == 2)
{
/* Vislt wants to tell the engine sonething. */
si m>runMbde = VI SI T_SI MMODE STOPPED;
i f(!VisltProcessEngi neComrand())
{
/* Di sconnect on an error or closed connection. */
Vi sl t Di sconnect () ;
/* Start running again if Vislt closes. */
si m>runMbde = VI SI T_SI MMODE_RUNNI NG,
}
}

} while(!sim>done && err == 0);

Data access functions for Fortran simulations do not have to be made available explicitly
because that is taken care of in the si nV2f library, which defines the Fortran-callable
wrapper functionsfor | i bsi m Instead of defining the data access function and
registering it, you only need to defineit. In fact, all data access functions for Fortran
simulations must be defined to successfully link your simulation.

Listing 5-19: fsim5.f: Fortran language example for making a data access function available.

i nteger function visitgetnetadata(handl e)
inmplicit none

i nteger handl e

i nclude "visitfortransi nW2interface.inc"
visitgetnetadata = VI SI T_| NVALI D HANDLE

end

Writing data access code 171

Instrumenting a simulation code

4.4 Data access function for metadata

The first data access function that you write should be the one that popul ates a metadata
object. Vislt uses metadata to determine which meshes and variables are in a database and
reading a database’s metadata is the first thing Vislt does when accessing it. The data
access function for returning metadata allocates and returns a handle to a

Si mul at i onMet aDat a object. The Si mul at i onMet aDat a object contains lists of
other metadata objects such as meshes and variables. Good starting points for a data
access function that returns metadata are found in Listing 5-18 and Listing 5-19. The code
listings found in this section may reproduce those listings, however, as the listings get
longer, the following code listings may instead contain code fragments required to
perform a particular operation. The code fragments can be included into your simulation
and modified until they expose the right variables for your simulation.

44.1 Returning smulation state metadata

Simulation state metadata is important because it indicates the running state of the
simulation aswell asits cycleiteration and simulated time. The C-Language examplein
Listing 5-20 shows how to set the simulation state into the metadata object. .

Listing 5-20: sim6.c: C-Language example for returning simulation state metadata.

vi sit_handl e Si mGet Met aDat a(voi d *chdat a)

{
visit _handle nd = VI SI T_| NVALI D HANDLE;
simul ati on_data *sim = (sinmulation_data *)cbdat a;
/* Create nmetadata with no variables. */
if(Vislt_Simulati onMetabData_al l oc(&rd) == VI SI T_CKAY)
{
/* Set the sinulation state. */
i f(sim>runMde == VISIT_SI MMODE_STOPPED)
Vislt_SimulationMetaData set Mode(nd, VI SIT_SI MMODE STOPPED) ;
el se(si m>runMde == SI M STOPPED)
Vislt_SimulationMetaData set Mode(nd, VI SIT_SI MMODE RUNNI NG ;
Vislt_SimulationMetaData_set Cycl eTi ne(nd, sim>cycle, sim>tine);
}
return nd,
}

Listing 5-21: fsim6.f: Fortran language example for returning simulation state metadata.

i nteger function visitgetnetadata()
inmplicit none
i nclude "visitfortransi nW2interface.inc"
ccc SI MSTATE comon bl ock
i nteger runflag, sintycle
real sintine
comon / SI MSTATE/ runflag, sintycle, sintine

172

Writing data access code

Instrumenting a simulation code

ccc | ocal vari abl es
i nteger md, err

i f(visitndsimalloc(nd).eq.VISIT_OKAY) then
err = visitndsi msetcycletine(nd, sincycle, sintinme)
i f(runflag.eq.1) then
err = visitndsi nset node(nd, VISIT_SI MVMODE _RUNNI NG

el se
err = visitndsi nset node(nd, VISIT_SI MMODE STOPPED)
endi f
endi f
vi sitgetnetadata = nd
end

4.4.2 Returning mesh metadata

If you want Vislt to plot any of your simulation’s data then you must expose at |east one of
your simulation’s meshes in the metadata. Remember that Vislt can support several
different mesh types from simple point meshes all the way up to complex multi-domain
unstructured meshes.

Mesh metadata is stored in the
Si mul ati onMet aDat a asalist of

MeshMet aDat a objects. Each » P L SR
MeshMet aDat a object contains — '
information about a mesh such asits name, st .

type, dimensions, units, labels, etc. Note that
when you create new MeshiMet aDat a

iy [iSsgi &m []

objects and add them to the A Label >

Si mul at i onMet aDat a object, they W""
become associated with the P Parsliel Coordinates b e 1 311 PUOLE
Si mul at i onMet aDat a object and you R =]

should not deallocated them. The Scatter » Hinlgor =7

Si nul at i onMet aDat a object and its T Socendshen 4 = =
contents will be destroyed after you passit P Subist .

back to Vislt. !

It is not important to set values for al of the W Volume L

membersin the MeshMet aDat a object so

long as you do set values for the nane, Samge 1At

meshType,

t opol ogi cal Di mensi on, Figure 5-22: Mesh variables in the plot menu

spat i al Di mensi on, and nunDomai ns.

The value that you use for the mesh’s name is the name that will appear in Visit's Plot
menus (see Figure 5-22) aswell as the name that will be passed to your data access
function when Vislt wants to plot your mesh. The meshType value specifies the mesh’s
type and can be any of the following values: VI SI T_MESHTYPE_RECTI LI NEAR,

Writing data access code 173

Instrumenting a simulation code

VI SI T_MESHTYPE_CURVI LI NEAR, VI SI T_MESHTYPE_UNSTRUCTURED,
VI SI T_MESHTYPE_PQO NT, VI SI T_MESHTYPE_AMR,

VI SI T_MESHTYPE_CSG. Thet opol ogi cal Di nensi on and

spati al Di mensi on values should be either 2 or 3, depending on whether your mesh
existsin 2D or 3D. Finally, the numDonai ns value should be set to the total number of
domains that comprise your mesh, or 1 in the case of a single domain.

Listing 5-23: sim7.c: C-Language example for returning mesh metadata.

visit_handl e ntl
visit_handl e nP

/*

{

}

VI SI T_I NVALI D_HANDLE;
VI SI T_I NVALI D_HANDLE;

Set the first nesh’s properties.*/
if(Vislt_MeshMetabData_all oc(&) == VI SI T_OKAY)

/* Set the nmesh’s properties.*/

Vi
Vi
Vi
Vi
Vi
Vi
Vi
Vi

Vi

slt_MeshMet aDat a_set Nane(nil, "nesh2d");

sl t_MeshMet aDat a_set MeshType(nil, VI SI T_MESHTYPE_RECTI LI NEAR) ;
slt _MeshMet aDat a_set Topol ogi cal Di nensi on(nil, 2);

slt_MeshMet aDat a_set Spati al Di nensi on(nil, 2);
slt_MeshMet aDat a_set XUni ts(nl, "cm');
slt_MeshMet aDat a_set YUni ts(nml, "cm');
slt_MeshMet aDat a_set XLabel (mL, "Wdth");
slt_MeshMet aDat a_set YLabel (L, "Height");

slt_Sinul ati onMet aDat a_addMesh(nd, nil);

/* Set the second mesh’s properties.*/
i f(Vislt_MeshMetabData_al |l oc(&) == VI SI T_OKAY)

{

/* Set the nmesh’s properties.*/

Vi
Vi
Vi
Vi
Vi
Vi
Vi
Vi
Vi
Vi

Vi

slt_MeshMet aDat a_set Nane(n2, "nesh3d");

sl t_MeshMet aDat a_set MeshType(nR2, VI SI T_MESHTYPE_CURVI LI NEAR) ;
slt _MeshMet aDat a_set Topol ogi cal Di nensi on(n2, 3);

slt_MeshMet aDat a_set Spati al Di nensi on(n2, 3);
slt_MeshMet aDat a_set XUni ts(n2, "cm');
slt_MeshMet aDat a_set YUni ts(n2, "cm');
slt_MeshMet aDat a_set ZUni ts(n2, "cm');
slt_MeshMet aDat a_set XLabel (n2, "Wdth");
slt_MeshMet aDat a_set YLabel (n2, "Height");
slt_MeshMet aDat a_set ZLabel (n2, "Depth");

slt_Si nmul ati onMet aDat a_addMesh(nd, n?R);

174

Writing data access code

Instrumenting a simulation code

Apart from glight differences in the names of the functions called, the Fortran interface
follows the same pattern as the C interface.

Listing 5-24: fsim7.f: Fortran language example for returning mesh metadata.

integer nmd, ml, nR, err

c Set the first nmesh’s properties
i f(visitnmdneshal | oc(ml).eq. VISI T_OKAY) then

err = visitndnmeshset nane(mnml, "nesh2d", 6)
err = visitnmdnmeshset nesht ype(mt,
VI SI T_MESHTYPE_RECTI LI NEAR)

err = visitnmdnmeshsettopol ogi cal di n{nil, 2)
err = visitnmdnmeshsetspatial di m(nl, 2)
err = visitnmdnmeshset xunits(ml, "cnl', 2)
err = visitnmdnmeshsetyunits(ml, "cnl', 2)
err = visitndnmeshset x|l abel (mL, "Wdth", 5)
err = visitndnmeshsetyl abel (nml, "Height", 6)
err = visitndsi maddnmesh(nd, nil)

endi f

c Set the second nesh’s properties
i f(visitnmdneshal | oc(nR).eq. VISI T_COKAY) then

err = visitndnmeshset nane(nk, "nesh3d", 6)
err = visitnmdnmeshset nesht ype(ng,
VI SI T_MESHTYPE_CURVI LI NEAR)

err = visitnmdnmeshsettopol ogi cal di m(nR2, 3)
err = visitnmdnmeshsetspatial di m(n2, 3)
err = visitnmdnmeshset xunits(nm2, "cnl', 2)
err = visitnmdnmeshsetyunits(n2, "cnl', 2)
err = visitnmdnmeshsetzunits(nm2, "cnl', 2)
err = visitndnmeshset x| abel (nm2, "Wdth", 5)
err = visitndneshsetyl abel (nm2, "Height", 6)
err = visitnmdnmeshset zl abel (nm2, "Depth", 5)
err = visitndsi maddnmesh(nd, nR)

endi f

443 Returning variable metadata

Variables must be exposed viathe metadataif they are to be plotted in Vislt. You need not
expose all of the variables that you have; only those you want to plot in Vislt. The

Si mul at i onMet aDat a object containsalist of Var i abl eMet aDat a objects,
which contain the metadata for all of the variables that you expose to Vislt. All variable
types: scalar, vector, tensor, label, array, etc. can be represented in the metadata as

Var i abl eMet aDat a objects. Specifying a variable only requires you to add a new

Writing data access code 175

Instrumenting a simulation code

Var i abl eMet aDat a object into the simulation metadata. You must set the nane,
nmeshNarme, t ype, and cent er i ng fieldsin order to create avalid object.

Listing 5-25: sim8.c: C-Language example for returning variable metadata.

/* Add a zonal scal ar variable on nesh2d. */
if(Vislt_Variabl eMetabData_all oc(&nd) == VI SI T_CKAY)

{
Vislt_Vari abl eMet aDat a_set Nanme(vnd, "zonal ");
Vislt_Vari abl eMet aDat a_set MeshNanme(vnd, "nmesh2d");
Vi slt_Vari abl eMet aDat a_set Type(vnd, VI SIT_VARTYPE_SCALAR) ;
Vislt_Variabl eMet aDat a_set Cent eri ng(vnd, VI SIT_VARCENTERI NG ZONE) ;
Vislt_Sinmul ati onMet aDat a_addVari abl e(nd, vnd);

}

/* Add a nodal scal ar variable on nesh3d. */
if(Vislt_Variabl eMetabData_al |l oc(&nd) == VI SI T_CKAY)

{
Vislt_Vari abl eMet aDat a_set Nane(vnd, "nodal ");
Vislt_Vari abl eMet aDat a_set MeshNanme(vnd, "nmesh3d");
Vi slt_Vari abl eMet aDat a_set Type(vnd, VI SIT_VARTYPE_SCALAR) ;
Vislt_Variabl eMet aDat a_set Cent eri ng(vnd, VI SI T_VARCENTERI NG _NODE) ;
Vislt_Sinmul ati onMet aDat a_addVari abl e(nd, vnd);

}

Listing 5-26: fsim8.f: Fortran language example for returning variable metadata.

¢ Add a zonal scal ar variable on nmesh2d.
i f(visitndvarall oc(vnd).eq.VISI T_OKAY) then

err = visitnmdvarsetnane(vnd, "zonal", 5)
err = visitndvarset neshnane(vnd, "nesh2d", 6)
err = visitnmdvarsettype(vnd, VISIT VARTYPE SCALAR)
err = visitnmdvarsetcentering(vnd, VISIT VARCENTERI NG ZONE)
err = visitndsi naddvari abl e(nd, vnd)
endi f

¢ Add a nodal scal ar vari able on nmesh3d.
i f(visitndvaralloc(vnd).eq.VISI T_OKAY) then

err = visitnmdvarsetnane(vnd, "nodal", 5)
err = visitndvarset neshnane(vnd, "nmesh3d", 6)
err = visitnmdvarsettype(vnd, VISIT VARTYPE SCALAR)
err = visitnmdvarsetcentering(vnd, VISIT_ VARCENTERI NG NODE)
err = visitndsi naddvari abl e(nd, vnd)
endi f

176 Writing data access code

Instrumenting a simulation code

4.4.4 Returning curve variable metadata

Aswith other variable types, curve variables (X-Y plot data) must also be exposed in the
metadata if they are to be plotted in Vislt. The Si nul at i onMet aDat a object contains
alist of Cur veMet aDat a objects, which contain the attributes of the curve variables that
will be exposed to Vislt from the simulation. The only required field that must be set in the
Cur veMet aDat a object isthe nane field, which specifies the name of the curve asit
will be used in the Plot list and in your data access function.

Listing 5-27: sim9.c: C-Language example for returning curve metadata.

/* Add a curve variable. */
if(Vislt _CurveMetaData_all oc(&nd) == VI SIT_OKAY)

{
Vi slt_CurveMet abDat a_set Nane(cnd, "sine");
Vi slt_CurveMet aDat a_set XLabel (cnd, "Angle");
Vi slt_CurveMet abDat a_set XUnits(cnd, "radi ans");
Vi slt_CurveMet abDat a_set YLabel (cnd, "Anplitude");
Vi slt_Sinul ati onMet aDat a_addCurve(nd, cnd);

}

Listing 5-28: fsim9.f: Fortran language example for returning curve metadata.

c Add a curve vari abl e
i f(visitndcurveall oc(cnd).eq.VISI T_COKAY) then

err = visitndcurveset nane(cnd, "sine", 4)
err = visitndcurvesetxl abel (cnd, "angle", 5)
err = visitndcurvesetxunits(cnd, "radians", 7)
err = visitndcurvesetyl abel (cnd, "anplitude", 9)
err = visitnmdsi maddcurve(nd, cnd)

endi f

445 Returning material metadata

In addition to the variable types mentioned so far, the Si nul at i onMet aDat a object
also contains alist of material variables. Thelist of material variablesis stored in the
materials member and is composed of Mat er i al Met aDat a objects. A

Mat er i al Met aDat a object contains the name of the material, the mesh on which it is
defined, and the list of possible material names that can be used.

Listing 5-29: sim10.c: C-Language example for returning material metadata.

/* Add a material */
if(Vislt_Material MetaData_all oc(&mat) == VI SI T_OKAY)

{
Vislt_ Material MetabData_set Name(rmat, "mat");

Writing data access code 177

Instrumenting a simulation code

Vislt_Material Met aDat a_set MeshNanme(nat ,
Vislt_Material Met aDat a_addMat eri al Name(mat ,
Vislt_Material Met aDat a_addMat eri al Name(mat ,
Vislt_Material Met aDat a_addMat eri al Name(mat ,

"mesh2d");
"lron");

" Copper ") ;
"Ni ckel ") ;

Vislt_Sinmulati onMet aDat a_addMateri al (nd, mat);

Listing 5-30: fsim10.f: Fortran language example for returning material metadata.

c Add a materi al

if(visitnmdmatal | oc(mat).eq. VISI T_OKAY) then
err = visitnmdmat set nane(mat, "mat", 3)
err = visitndmat set meshnane(mat, "nmesh2d", 6)
err = visitnmdmat addmat eri al nanme(mat, "lIron", 4)
err = visitndmat addmat eri al name(mat, " Copper", 6)
err = visitndmat addmat eri al name(mat, "N ckel ", 6)
err = visitnmdsi maddmat erial (nd, mat)

endi f

446 Returning expression metadata

Vislt allows databases to return user-defined expressions that can be plotted or used to
create new expressionsin the Expressions window. The Si nul at i onMet aDat a
object containsalist of Expr essi onMet aDat a objects that each contain the
information for one expression. An expression consists of an expression name, definition,
and expression type. The expression definition is a string that must contain avalid Vislt
expression, as defined in by the expression language documented in the Vislt User’s

Manual.

Listing 5-31: simll.c: C-Language example for returning material metadata.

/* Add some expressions. */

i f(Vislt_ExpressionMetaData_al |l oc(&end) == VI SI T_OKAY)

n ZVEC") :

“{zonal, zonal}");

end) ;

{
Vi sl t _Expressi onMet aDat a_set Nane(end,
Vi slt _Expressi onMet aDat a_set Definition(end,
Vi slt_Expressi onMet aDat a_set Type(end, VI SIT_VARTYPE VECTOR);
Vislt_SinmulationMetabDat a_addExpressi on(nd,
}

i f(Vislt_ExpressionMetaData_al |l oc(&end) == VI SI T_OKAY)

{

Vi slt _Expressi onMet aDat a_set Nane(end,
Vi slt _Expressi onMet aDat a_set Definition(end,

“nid");
"nodei d(nmesh3d)");

Vislt_ExpressionMetaDat a_set Type(end, VI SIT_VARTYPE _SCALAR);

178

Writing data access code

Instrumenting a simulation code

Vi slt_Sinmul ati onMet aDat a_addExpr essi on(nd, end);

Listing 5-32: fsim11.f: Fortran language example for returning material metadata.

c Add some expressions
i f(visitnmdexpralloc(end).eq.VISIT_OKAY) then
err vi si t ndexpr set nane(end, "zvec", 4)
err vi si t ndexprsetdefinition(end, "{zonal, zonal}", 14)
err vi si t ndexprsettype(end, VISIT_VARTYPE VECTOR)

err
endi f
i f(visitnmdexpralloc(end).eq.VISIT_OKAY) then

err vi si t ndexpr set nane(end, "nid", 3)

err vi si t ndexprsetdefinition(end, "nodei d(nmesh3d)", 14)

err vi si t ndexprsettype(end, VISIT_VARTYPE SCALAR)

vi si t ndsi maddexpr essi on(nd, end)

err = visitnmdsi maddexpressi on(nd, end)
endi f

447 Returning smulation-defined command metadata

Vislt allows your simulation to provide the names of user-defined commandsin the
metadata object. When such commands appear in asimulation’s metadata, it influences
Vislt to create special command buttons in the Simulations window. When you open
the Simulations window and click on the buttons, it causes a chain of events that ends
up calling your simulation’s command callback function, which then performs some
action based on the name of the command being executed. These custom commands give
you the opportunity to perform limited steering of your simulation from within Vislt.
More advanced methods of simulation steering will be covered later in this chapter.

Writing data access code 179

Instrumenting a simulation code

Examples of simple simulation
commands that you might want to
expose in the metadata are the “run”,
“halt”, “step”. Imaginethat you use Vislt
to connect to your simulation and you
create some plots. Once you are done
analyzing aparticular time step, you may
want to click the “run” button in the
Simulations window (shown in
Figure 5-33) to let your smulation
proceed for awhile. After your
simulation has advanced, you could click
the “halt” button to pause it while you
investigate features that have devel oped
in the data for the simulation’s current
time step.

The C-Language mai nl oop function
that was created in Section 3.4.2 did not
have support for acommand callback
function. The following code listing
shows what the command callback
function would look likefor asimulation
that exposes three simple commands:
halt, step, and run. The code listing also
shows how the command callback
function isregistered with | i bsi m
using the

e

Simiulas o
Senplatheey | b 12 cn dantessiss. lnl, gov H
AR i ‘Wabsn
Hasi daerf goine el oo
M e feiml2
Date Wed Az 7 15 16:06 2010

Hum Pro 1
path fess j uieiell | path
L= e TE il Dheovelerck INATES CHEALNNG CUSTOM COovamands

Serlation dtabed Sraased

Wkl s Labes

(ST] Clhadst cacks Diigannect

Comtrob |

=

Mok gt Sarip chirts

Lomymgrads

< halt bl

B Enabile cime ranging

Stan e St

Liespanil

I"I:II_E DI_S-\I: £5

Figure 5-33: Vislt’'s Simulations window with custom

simulation commands.

Vi sl t Set CommandCal | back function. The new command callback function is
registered after a successful call to Vi sl t At t enpt ToConpl et eConnect i on and
the changes to the mainloop function are underlined.

Listing 5-34: sim12.c: C-Language example for installing a command callback function.

voi d

Cont r ol CommandCal | back(const char *cnd,

voi d *chdat a)

{

const char *args,

simul ati on_data *sim = (sinmulation_data *)cbdat a;

i f(strcnp(cnd,

"hal t") == 0)

sim>runMde = VI SIT_SI MMODE STOPPED;

el se if(strcnp(cnd,

el se if(strcnp(cnd, "run")

"step")
simul ate_one_tinestep(sim;

0)

0)

sim>runMde = VI SIT_SI MMODE RUNNI NG,

}

voi d mai nl oop(sinulation_data *sim

180

Writing data access code

Instrumenting a simulation code

{
int blocking, visitstate, err = 0;
do
{
bl ocking = (sim>runMde == VISIT_SIMMODE RUNNING ? 0 : 1;
/[* Get input fromVislt or tineout so the sinulation can run. */
visitstate = VisltDetectlnput (bl ocking, -1);
/* Do different things depending on the output from
Vi sltDetectlnput. */
if(visitstate <= -1)
{
fprintf(stderr, "Can't recover fromerror!\n");
err = 1;
}
else if(visitstate == 0)
{
/* There was no input fromVislt, return control to sim */
simul ate_one_tinmestep(sim;
}
else if(visitstate == 1)
{
/* Vislt is trying to connect to sim */
i f(VisltAttenpt ToConpl et eConnection())
fprintf(stderr, "Vislt connected\n");
[* Reqgister command call back */
Vi sl t Set CommandCal | back(Cont r ol ConmandCal | back,
(void*)sim:
/* Register data access call backs */
Vi sl t Set Get Met aDat a(Si mGet Met aData, (void*)sim;
}
el se
fprintf(stderr, "Vislt did not connect\n");
}
else if(visitstate == 2)
{
/* Vislt wants to tell the engine sonething. */
si m >runMde = VI SI T_SI MMODE_STOPPED;
i f(!VisltProcesskEngi neComrand())
{
/* Di sconnect on an error or closed connection. */
Vi sl t Di sconnect () ;
/* Start running again if Vislt closes. */
si m >runMde = VI SI T_SI MMODE_RUNNI NG;
}
}
} while(!sim>done && err == 0);
}

Writing data access code 181

Instrumenting a simulation code

Listing 5-35: sim12.c: C-Language example for returning simulation commands in the metadata.

/* Add sone commands. */

const char *cnd_names[] = {"halt", "step", "run"};
for(i = 0; i < sizeof(cnd_nanes)/sizeof (const char *); ++i)
{

visit_handle cnd = VI SI T_I NVALI D_HANDLE;
i f(Vislt_ConmmandMet aData_al | oc(&cnd) == VI SI T_OKAY)
{
Vi sl't _ConmandMet aDat a_set Nane(cnd, cnd_nanes[i]);
Vi slt_Sinul ati onMet aDat a_addGeneri cConmand(nd, cnd);

Since the Fortran interface, defined in the si nW2f library, requires callbacksto bein
place when the simulation is linked, the Fortran simulation examples so far have already
contained a command callback function. No changeis required to the mai nl oop
function in the Fortran simulations because the callback is aready installed. The
command callback function, which isaways named vi si t conmandcal | back ina
Fortran simulation, previously did nothing. The following code example shows how to
compare the names of acommand coming from abutton click in Vislt's Simulations
window with the names of the supported commands and how to perform the desired
action. The Fortran interface providesthevi si t st r cnp function, which isanalygousto
the C-Language’'sst r cnp function in order to make string comparisons easier in Fortran.

Listing 5-36: fsim12.f: Fortran language implementation of the command callback function.

subroutine visitcomuandcal | back (cnd, |cnd, args, |args)
inmplicit none
character*8 cnd, args
i nt eger lcnd, largs
i nclude "visitfortransi nW2i nterface.inc"
ccc S| MSTATE conmon bl ock
i nteger runflag, sintycle
real sintinme
conmon / SI MSTATE/ runflag, sintycle, sintine

c Handl e the conmands that we define in visitgetnetadata.
if(visitstrcnp(cnd, lcnd, "halt", 4).eq.0) then
runflag = 0

el seif(visitstrcnp(cend, lcnd, "step", 4).eq.0) then
call sinulate_one_tinestep()

el seif(visitstrecnp(cend, lcnd, "run", 3).eq.0) then
runflag = 1

endi f

182

Writing data access code

Instrumenting a simulation code

end

Listing 5-37: fsim12.f: Fortran language example for returning simulation commands in metadata..

c Add si nmul ati on conmands

i f(visitndcndal | oc(cnd). eq. VISI T_OKAY) then
err = visitndcndset nane(cnd, "halt", 4)
err = visitndsi naddgeneri cconmand(nd, cnd)

endi f

i f(visitndcndal | oc(cnd). eq. VISI T_OKAY) then
err = visitndcndset nane(cnd, "step", 4)
err = visitndsi naddgeneri cconmand(nd, cnd)

endi f

i f(visitndcndal | oc(cnd). eq. VISI T_OKAY) then
err vi si t ndcndset nanme(cnd, "run", 3)
err vi si t mdsi naddgeneri cconmand(nd, cnd)

endi f

45 Data access function for meshes

Now that you've implemented a function to return metadata about the meshes and
variablesin your smulation, you can write a new data access function to return the actual
mesh. Adding a new data access function means that you will be registering a new
callback function as you did before to register the metadata callback function. If your
simulation is written in Fortran, you must implement thevi si t get mesh function to
return your mesh’s data.

Vislt deals with several mesh types and each mesh type has its own corresponding data
object that represents its data. The data access function for meshes allocates a handle to
one of the mesh data types, fillsin the results, and returnsit. This section will first show
how to return the right mesh to Vislt and will then focus on passing different types of
meshes back to Vislt so they can be visualized.

451 Adding a mesh data access function

Adding a mesh data access function means that you have to first write afunction and call
Vi sl t Set Get Mesh toregister it with| i bsi m You must register the function after a
successful call to Vi sl t At t enpt ToConpl et eConnect i on so it should be done at
the same time you register your metadata callback. The mesh data access function takes 3
argumentsif you program in C. Thefirst argument is adomain number, which you can use
to return smaller pieces of the whole mesh. The mesh name will be one of the meshes that
you added to the metadata. The second argument is the name of the mesh that Vislt wants
to read. The third argument is avoid pointer to the the user-defined data that you passed to
Vi sl t Set Get Mesh when you registered the mesh callback function. The user-defined
data should point to your data model so you can retrieve mesh data from the callback
function without using global variables.

Writing data access code 183

Instrumenting a simulation code

The basic procedure involved in writing a mesh data access function isto first check the
incoming name against the names of the meshes that your simulation is prepared to return
and when oneis found, return a handle to a mesh object that contains the mesh’s data. If
your mesh data access routine does not recognize the name of the mesh or if thereisno
data for the requested domain then you can return VI SI T_| NVALI D_HANDLE instead
of returning a mesh data object.

Listing 5-38: mesh.c: C-Language example for installing a mesh data access function.

visit_handl e VisltGetMesh(int donmain, const char *nanme, void *data)

{
visit _handl e nesh = VI SI T_| NVALI D HANDLE;

i f(strcnp(nane, "mesh2d") == 0)

{
/* Allocate a rectilinear nesh. */
if(Vislt_RectilinearMesh_alloc(&resh) == VI SIT_OKAY)
{
/* Fill in the attributes of the RectilinearMesh. */
}
}
el se if(strcnp(nane, "nesh3d") == 0)
{

/* Allocate a curvilinear mesh. */
if(Vislt_CurvilinearMesh_alloc(&resh) == VI SIT_OKAY)
{

}

/* Fill in the attributes of the CurvilinearMesh. */

}

return nesh;

Remember that when writing a Fortran simulation, all of the data access functions must be
defined before you can actualy link your simulation. That means that up until now, the
Fortran example programs have been using a simple implementation of the

Vi si t get mesh function, which did nothing. The rest of this section will cover how to
add an appropriate, working implementation of thevi si t get mesh data access
function.

Listing 5-39: fmesh.f: Fortran language example of a mesh data access function.

i nteger function visitgetnesh(handl e, donai n, name, | nane)
inmplicit none

character*8 nane

i nt eger handl e, domain, | nane

184

Writing data access code

Instrumenting a simulation code

i nclude "visitfortransi nW2i nterface.inc"
i nteger h
h= VI SI T_I NVALI D_HANDLE
i f(visitstrcnp(nane, |nane, "mesh2d", 6).eq.0) then
c Create a rectilinear nmesh here
i f(visitrectmeshalloc(h).eq.VISIT_OKAY) then
c fill in the nmesh data
endi f
el seif(visitstrcnp(nanme, |nane, "mesh3d", 6).eq.0) then
c Create a curvilinear nmesh here
i f(visitcurvmeshalloc(h).eq.VISIT_OKAY) then

c fill in the nesh data
endi f
endi f
visitgetnesh = h
end

45.2 VariableData

SimV2 providesaVar i abl eDat a object that can represent linear arrays of char, int,
float, and double precision data. Each tuple in the array can consist of multiple values, or
components. For example, scalar data has 1 component but 3D vector datawould have 3
components that describe it. Label variable data or array variable data could have more
components. The simulation providesits datato Vislt in terms of Var i abl eDat a
objects. Meshes can consist of 1 or more Var i abl eDat a objects to specify coordinates
and connectivity. The composition, type, and number of the Var i abl eDat a objectsina
mesh will vary depending on the mesh type.

Var i abl eDat a objects all have a concept of an owner for the data arrays that they
wrap. Some arrays are long-lived and change little and can be used by Vislt without
making a copy. These arrays are owned by the simulation and have an owner of type

VI SI T_OMER_SI M Some arrays are dynamically created by the sim for the express
purpose of being fed to Vislt with the intent that Vislt will free the memory associated
withthe Var i abl eDat a. These arrays have an owner of typeVI SIT_OMER VI SI T
and Vislt frees the data using the C Standard Library f r ee() function when the dataiis
no longer needed. As such, any data passed to Vislt with owner type

VI SI T_OMER_VI SI T must be allocated using mal | oc() . Thereisaspecial owner
case called VI SI T_OWNER_COPY that can be used to wrap stack variables that will go
out of scope. When VI SI T_OANER_COPY isused, it actsasatrigger toget | i bsi mto
copy the data passed to the Var i abl eDat a instead of just keeping a pointer to it. The
copied datais then marked with VI SI T_OANER_VI SI T as the owner.

4.6 Rectilinear meshes

Rectilinear meshes can be returned by the mesh data access function by allocating and
returningaRect i | i near Mesh object. In fact, meshes of type AVT_AMR_MESH in
the metadata are treated as rectilinear meshes when it is time to return data to Vislt. Once

Writing data access code 185

Instrumenting a simulation code

you've allocated the Rect i | i near Mesh object, start initializing its members using
information about the mesh. For starters, create 2 or 3 Var i abl eDat a objectsto
represent the mesh’s coordinate fields. You can associate the Var i abl eDat a objects
with the mesh as its coordinates by calling

Vislt _Rectilinear Mesh_set Coor dsXY for 2D and

Vislt _Rectilinear Mesh_set Coor dsXYZ for 3D.

In SimV2, the only required pieces of aRect i | i near Mesh object are the coordinates.
All other fieldsin the mesh will be set to sensible default values. You can, however,
override the default values.

You can set the basel ndex member, which is an offset in X,Y,Z that will be added to
your mesh’s zone numbers and node numbers when Vislt displays information about your
mesh. You can leave these values set at zero. However, when you want to create a multi-
domain mesh that has global zone and node numbers, you should set the values for
basel ndex. Global node and zone numbers can make it easier to think of your domain-
decomposed mesh as a single entity by making Vislt features such as pick return global
node or zone numbers instead of per-domain node or zone numbers.

Now that you've set thevaluesinthe Rect i | i near Mesh object that indicate itslogical
size, you can tell Vislt whether the mesh has ghost zones. TheRect i | i near Mesh
object indicates whether there are ghost zones by using the values stored in the

m nReal | ndex and maxReal | ndex members. These values are set by calling

Vislt _RectilinearMesh_set Real | ndi ces. Thedefaults are set to values that
make sense for a mesh with no ghost zones: the minimums are all zeroes and the
maximums are set to the number zones in the specified dimension minus one. If your mesh
has ghost zones in any of the dimensions then be sure that you add 1 to the values stored in
them nReal | ndex array for the dimensions that have ghost zones. Also be sure to
subtract 1 from the elementsin the maxReal | ndex array for the dimensions that have
ghost zones..

Listing 5-40: mesh.c: C-Language example for returning a rectilinear mesh.

/* Simulation mesh */

float rmesh_x[] = {0., 1., 2.5, 5.};

float rmesh_y[] = {0., 2., 2.25, 2.55, 5.};
i nt rmesh_dinms[] = {4, 5, 1};

i nt rmesh_ndins = 2;

visit _handl e
Si net Mesh(int donain, const char *nane, void *cbdata)

{
visit _handle h = VISIT_I NVALI D HANDLE;
i f(strcnp(nane, "mesh2d") == 0)

if(Vislt_RectilinearMesh_alloc(&h) !'= VISIT _ERROR)
{

186

Writing data access code

Instrumenting a simulation code

vi sit_handl e hxc, hyc;

Vislt _Variabl eDat a_al | oc(&xc);

Vislt _Variabl eData_al | oc(&hyc);

Vislt_Vari abl eDat a_set Dat aF(hxc, VISIT OMNER SIM 1,
rmesh_di ms[0], rnmesh_x);

Vislt_Vari abl eDat a_set Dat aF(hyc, VISIT OANER SIM 1,
rmesh_di ms[1], rnesh_y);

Vislt_RectilinearMesh_set CoordsXY(h, hxc, hyc);

}
}

return h;

The Fortran implementation of the GetMesh callback function follows the same pattern as
the C implementation. The data arrays that make up the rectilinear mesh in the upcoming

Fortran example are stored in a Fortran common block, making the data accessible to the

si mul at e_one_ti mest ep function and thevi si t get mesh function. If you store

your datain common blocks, it is easy to make it accessible to Vislt.

Listing 5-41: fmesh.f: Fortran language example for returning a rectilinear mesh.

subroutine sinulate_one_tinestep()
ccc RECTMESH conmmon bl ock

i nteger NX, NY

paraneter (NX = 4)

paranmeter (NY = 5)

real rmx(NX), rny(NY)

i nteger rndins(3), rmmdins

comon / RECTMESH rndi ns, rmmdins, rnmx, rny

save [RECTMESH
c Initial rectilinear nesh

data rmmdins /2/

data rndins /4, 5, 1/

data rnx/0., 1., 2.5, 5./

data rny/0., 2., 2.25, 2.55, 5./
c Simulate one tinme step

end
C ...
Cc visitgetnmesh
C ...

i nteger function visitgetnmesh(handl e, domain, nane, |nane)
inmplicit none
character*8 nane
i nt eger handl e, domain, | nane
i nclude "visitfortransi nW2interface.inc"
ccc RECTMESH common bl ock (shared with sinul ate_one_ti nmestep)
i nteger NX, NY
paraneter (NX = 4)
paranmeter (NY = 5)
real rmx(NX), rny(NY)

Writing data access code 187

Instrumenting a simulation code

i nteger rndins(3), rmdins

comon / RECTMESH rndins, rmmdinms, rnx, rny
ccc | ocal variables

i nteger h, err

h = VI SI T_I NVALI D_HANDLE
i f(visitstrcnp(nanme, |name, "mesh2d", 6).eq.0) then
i f(visitrectnmeshal l oc(h).eq.VISIT_OKAY) then

err = visitvardataall oc(x)
err = visitvardataal |l oc(y)
err = visitvardatasetf(x,VISIT_OMER _SI M 1, NX, r nx)
err = visitvardatasetf(y,VISIT_OMER _SI M 1, NY, rny)
err = visitrectnmeshsetcoordsxy(h, X, y)

endi f

endi f

visitgetnesh = h
end

e

.

1.¥

L

I.e

i.¥

[N
L B 3

. d. @ |

Figure 5-42: 2D rectilinear mesh returned by the previous
code examples.

4.7 Curvilinear meshes

Curvilinear meshes can be passed to Vislt by alocating and returning a
Cur vi | i near Mesh object from your mesh data access function. The procedure for
creating a curvilinear mesh is nearly the same as that for creating arectilinear mesh. The

188 Writing data access code

Instrumenting a simulation code

main difference that Vislt recognizes between the two mesh typesis the size of the
coordinate arrays. A curvilinear mesh must have the X,Y,Z coordinates of each nodein the
mesh explicitly provided, whereas most of the coordinates are implicitly defined, with

only 1D arrays
mesh, you will

given for the X,Y,Z coordinates, in arectilinear mesh. Aswith arectilinear
need to create 2 or 3 Var i abl eDat a objectsin which to store the

coordinate data when coordinate data are separate. The size of each coordinate array will
be NX*NY*NZ where NX is the number of nodesin the X dimension, NY is the number
of nodesontheY dimension, and NZ isthe number of nodesin the Z dimension. Sincethe

code for handli

ng curvilinear meshesis so similar to that for handling rectilinear meshes,

refer to Section 4.6 for more detail on setting valuesinto the Cur vi | i near Mesh.

! Listing 5-43:

/* Curvi l
float cne
{{0.,1
{{0.,1

}s
int crmesh
int crmesh

visit_han
Si nGet Mes
{

visit_

if(str
{
i f(
{

mesh.c: C-Language example for returning a curvilinear mesh.

i near nesh */

sh_x[2][3][4] = {
.,2.,3.},{0.,1.,2.
.,2.,3.},{0.,1.,2

_dinms[] = {4, 3, 2};
_ndinms = 3;

dl e
h(int domain, const char *nane, void *cbdata)

handl e h = VI SI T_I NVALI D_HANDLE;
cnp(nane, "mesh3d") == 0)
Vislt CurvilinearMesh_alloc(&) !'= VISI T _ERROR)

int nn;

visit_handl e hxc, hyc, hzc;

nn = cnmesh_dins[0] * cnesh_dins[1] * cnesh_dins[2];
Vislt_Vari abl eDat a_al | oc(&hxc);

Vislt_Variabl eData_al | oc(&hyc);

Vislt Variabl eData_al | oc(&hzc);

Vislt_Vari abl eDat a_set Dat aF(hxc, VISIT OANER SIM 1, nn,
(float*)cnesh_x);

Vislt_Vari abl eDat a_set Dat aF(hyc, VISIT OANER SIM 1, nn,
(float*)cnesh_y);

Vislt_Vari abl eDat a_set Dat aF(hzc, VISIT OANER SIM 1, nn,
(float*)cnesh_z);

Writing data access code

189

Instrumenting a simulation code

Vislt_Curvilinear Mesh_set CoordsXYZ(h, cnmesh_dins, hxc, hyc,
hzc) ;
}
}
return h;

The Fortran interface providesthevi si t meshcur vi | i near function to create a
rectilinear mesh that can be passed back to Vislt. Thevi si t meshcur vi | i near
function essentially packages up the code from the C-Language example, making it
possible to dynamically create a Cur vi | i near Mesh object and populate its members.
The data arrays that make up the curvilinear mesh in the upcoming Fortran example are
stored in a Fortran common block, making the data accessible to the

si mul at e_one_ti mest ep function and thevi si t get mesh function.

Listing 5-44: fmesh.f: Fortran language example for returning a curvilinear mesh.

Cccc

subroutine simulate_one_tinmestep()
CURVMESH comon bl ock
i nteger CNX, CNY, CNz

paranmeter (CNX = 4)
paranmeter (CNY = 3)
paranmeter (CNZ = 2)

i nteger cndins(3), cmdins

real cmx(CNX, CNY, CNZ), cnmy(CNX, CNY, CNZ), cne(CNX, CNY, CNZ)
comon / CURVMESH c¢ndi ns, cmmdi s, cnx, cny, cne

save / CURVMESH

¢ Curvilinear nesh data

data cnmx/0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3.,

0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3./

data cny/0.5,0.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5,
. 0.50.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5/

data cne/0.,0.,0.,0., 0.,0.,0.,0., 0.,0.,0.,0,

1.,1.,12.,1., 1.,1.,1.,1., 1.,1.,1.,1./

data cmdi ns / 3/
dat a cndi ns/ CNX, CNY, CNz/

c Sinulate one tine step

end
C __
c visitgetnesh
C __
i nteger function visitgetnmesh(handl e, donai n, name, | nane)
inmplicit none
character*8 nane
i nt eger handl e, domain, | nane
i nclude "visitfortransi nW2i nterface.inc"
ccc CURVMESH comon bl ock (shares with simnul ate_one_ti mestep)

i nteger CNX, CNY, CNz
paranmeter (CNX = 4)

190

Writing data access code

Instrumenting a simulation code

paranmeter (CNY = 3)
paraneter (CNZ 2)
i nteger cndins(3), cmdins
real cmx(CNX, CNY, CNZ), cny(CNX, CNY, CNZ), cne(CNX, CNY, CN2Z)
comon / CURVMESH c¢ndi ns, cmmdi s, cnk, cny, cne
ccc | ocal variables
integer h, x, y, z, nnodes, err

h = VI SI T_I NVALI D_HANDLE
if(visitstrcnp(nanme, |name, "nmesh3d”, 6).eq.0) then
i f(visitcurvimeshal |l oc(h).eq.VISIT_OKAY) then
err = visitvardataall oc(x)
err vi sitvardataal | oc(y)
err vi sitvardat aal | oc(z)
nnodes = CNX * CNY * CNZ
err = visitvardatasetf(x,VISIT_OMER _SI M 1, nnodes, cnx)

err = visitvardatasetf(y,VISIT_OMER_SI M 1, nnodes, cny)
err = visitvardatasetf(z,VISIT_OMER _SI M 1, nnodes, cne)
err = visitcurvmeshsetcoordsxyz(h, cmdins, X, y, 2)
endi f

endi f

visitgetnesh = h

end

I I
.i

00

Figure 5-45: 3D curvilinear mesh returned by the previous
code examples

Writing data access code 191

Instrumenting a simulation code

4.8 Point meshes

Point meshes can be returned by allocating and returning a Poi nt Mesh object from your
mesh data access function. Once you've allocated the Poi nt Mesh object, start
initializing its members using information about the mesh. Point meshes contain relatively
few elements - little more than alist of vertices. Aswith structured meshes, you will need
to create 2 or 3Var i abl eDat a objectsin which to store the coordinate data when
coordinate data are separate. You can then associate those Var i abl eDat a objects with
the Poi nt Mesh object by calling Vi sl t _Poi nt Mesh_set Coor ds XY or

Vi sl't _Poi nt Mesh_set Coor dsXYZ..

Listing 5-46: point.c: C-Language example for returning a point mesh.

#defi ne NPTS 1000

/* Simulation data is stored in this structure. */
t ypedef struct

{

i nt cycl e;
double tine;

i nt runhbde;
i nt done;

fl oat angl e;
fl oat *X;

fl oat *y;

fl oat *z;
} sinmulation_data;

visit_handl e
Si net Mesh(int donain, const char *nane, void *cbdata)
{
visit_handle h = VI SI T_| NVALI D_HANDLE;
/* W passed a pointer to the sinulation data as user-data when we
* registered the SinGetMesh data access cal |l back.
*/
simulati on_data *sim = (sinmulation_data *)cbdat a;

i f(strcnp(nane, "point3d") == 0)

{

i f(Vislt_PointMesh_alloc(&h) !'= VISIT_ERROR)

{
visit_handl e hx, hy, hz;
Vislt _Variabl eData_al | oc(&hx);
Vislt_Vari abl eDat a_al | oc(&hy);
Vislt Variabl eData_al | oc(&hz);
Vislt Variabl eData_set DataF(hx, VISIT OMNER SIM 1, NPTS,
Si m >x);
Vislt Variabl eData_set DataF(hy, VISIT OANER SIM 1, NPTS,
sim>y);

192 Writing data access code

Instrumenting a simulation code

Vislt _Variabl eData_set DataF(hz, VISIT OMNER SIM 1, NPTS
sim>z);
Vi slt_Poi nt Mesh_set Coor dsXYZ(h, hx, hy, hz);

}

return h;

The Fortran interface providesthevi si t meshpoi nt function so you can create a

Vi sl t _Poi nt Mesh object that can be returned to Vislt. Thevi si t neshpoi nt
function takes 6 arguments. The first argument is an integer handle to the mesh object that
was passed intothevi si t get mesh function. The second argument allows you to set the
number of dimensions that your point mesh will use: 2 or 3. The third argument lets you
set the number of nodes in your point mesh. The final three REAL arguments contain the
X,Y,Z coordinates, respectively.

Listing 5-47: fpoint.f: Fortran language example for returning a point mesh.

i nteger function visitgetnesh(domain, nane, | nane)
inmplicit none
character*8 nane
i nt eger domai n, | name
i nclude "visitfortransi nW2i nterface.inc"
ccc PO NTMESH common bl ock (shared with sinmul ate_one_ti nestep)
i nt eger NPTS
par anmeter (NPTS = 1000)
real pmx(NPTS), pny(NPTS), pnz(NPTS)
common /PO NTMESH pnx, pny, pne
ccc | ocal vars
integer h, hx, hy, hz, err

h = VI SI T_I NVALI D_HANDLE
i f(visitstrcnp(nanme, |name, "point3d", 7).eq.0) then
i f(visitpointnmeshalloc(h).eq.VISIT_COKAY) then

err = visitvardataall oc(hx)
err = visitvardataall oc(hy)
err = visitvardataall oc(hz)
err = visitvardatasetf(hx, VISIT_ OMER SIM 1, NPTS, pnx)
err = visitvardatasetf(hy, VISIT_ OMNER_SIM 1, NPTS, pny)
err = visitvardatasetf(hz, VISIT_ OMNER_SIM 1, NPTS, pne)
err = visitpointnmeshsetcoordsxyz(h, hx, hy, hz)
endi f
endi f
visitgetnesh = h
end

Writing data access code 193

Instrumenting a simulation code

-LDepth {cm)

)

oo

Figure 5-48: 3D point mesh returned by the previous code
examples

49 Unstructured meshes

Unstructured meshes can be returned allocating and returning an Unst r uct ur edMesh
object from your mesh data access function. After allocating the Unst r uct ur edMesh
object, you can begin filling in its data. As with other mesh types, you must provide
coordinates. Thisrequireseither 2 or 3Var i abl eDat a objects when the coordinates are
separate. You can associate the coordinate arrays with the Unst r uct ur edMesh object
by callingtheVi sI't _Unst ruct uredMesh_set Coor dsXY or

Vi slt_UnstructuredMesh_set Coor dsXYZ functions.

194 Writing data access code

Instrumenting a simulation code

VISIT_CELL_TET

1 4
VISIT_CELL_WEDGE

VISIT_CELL_PYR

1 2

4
0 3
1
2 3 2

VISIT_CELL_HEX

Figure 5-49: Node ordering for 3D unstructured zone types

In addition to coordinates, you
must also create a

Var i abl eDat a object that
wraps an integer array
containing the mesh
connectivity. The mesh
connectivity is stored as alinear
array of integersin sequences
that list the zone type, followed
by the node indices being used
for that zone. The connectivity
can contain amix of all zone
typesin any order. The node
indices should begin at zero,
even inlanguageswherethefirst
array element isone, such asin
Fortran. This pattern is repeated
until al zonesin the mesh have
been identified. Figure 5-49
shows the node ordering that
must be used to create cells for
an unstructured mesh, though
polyhedral cells are not shown.

Note that the node ordering (VTK’s node ordering) is the same as for creating Silo files,
except for the wedge zone type.

If your mesh has ghost zones, you can indicate their placement in the zone list by calling
Vi slt_UnstructuredMesh_set Real | ndi ces. The function takes start and end
indices of the real zonesin the zone list. Zones before the start or after the end of the
specified indices are treated as ghost zones. If your mesh has no ghost zones then you do
not need to set anything as all zones are assumed to be real zones by default.

Listing 5-50: unstructured.c: C-Language example for returning an unstructured mesh.

fl oat
float umy[]
float une[] =
/* Connectivity */
int connectivity[]
VI SI T_CELL_HEX,
VI SI T_CELL_HEX,
VI SI T_CELL_PYR

unx| |

VI SI T_CELL_WEDGE,

VI SI T_CELL_TET,
b

int lconnectivity

{o.,2.,
{o.,0.,
{2.,2.,

PP, O0OM~O™

coem

o
NESES
NESEN
EESIN
ono

,1,2,3,4,5,6,7,
,5,6,7,8,9, 10, 11,
, 9,10, 11, 12,

, 14,5, 2, 15, 6,

,14,13,5

N RO

,2.,2.,0.,1.,2.,4.,4.}
,4.,4.,4.,6.,0.,0.,0.}
,2.,0.,0.,1.,4.,2.,0.}
/* hex, zone 1 */
/* hex, zone 2 */
/* pyramd, zone 3 */
/* wedge, zone 4 */
/* tet, zone 5 */

si zeof (connectivity) / sizeof(int);

Writing data access code

195

Instrumenting a simulation code

i nt umnodes
int umzones

16;
5;

visit_handl e
Si mGet Mesh(i nt domai n, const char *nanme, void *chdata)

{
visit_handl e h = VI SI T_I NVALI D_HANDLE;
i f(strcnp(nanme, "unstructured3d") == 0)
{
i f(Vislt_UnstructuredMesh_alloc(&h) != VISIT_ERROR)
{
visit_handl e x,vy, z, conn;
Vislt _Variabl eData_al | oc(&x);
Vislt _Variabl eData_al | oc(&y);
Vislt _Variabl eData_al | oc(&z);
Vislt_Variabl eData_set DataF(x, VISIT_ OMER SIM 1, umnodes,
umx) ;
Vi slt_Variabl eDat a_set DataF(y, VISIT_OMER_SIM 1, umnodes,
uny) ;
Vislt_Variabl eData_setDataF(z, VISIT_ OMWNER SIM 1, umnodes,
une) ;
Vislt_Variabl eData_al | oc(&conn);
Vislt_Variabl eData_set Datal (conn, VISIT OMNER SIM 1,
| connectivity, connectivity);
Vi slt_UnstructuredMesh_set CoordsXYZ(h, x, vy, z);
Vislt_UnstructuredMesh_set Connectivity(h, umzones, conn);
}
}
return h;
}

Listing 5-51: funstructured.f: Fortran language example for returning an unstructured mesh.

subroutine simulate_one_tinmestep()
inmplicit none
include "visitfortransimnterface.inc"
ccc UNSTRUCTURED conmon bl ock (shared with visitgetnesh)
i nteger NNODES, NZONES, LCONN
par amet er (NNODES = 16)
par anmet er (NZONES = 5)
paranmeter (LCONN = 36)
real umx(NNODES), umy(NNODES), unz(NNODES)
i nteger connecti vity(LCONN)
common / UNSTRUCTURED/ unx, uny, ung, connectivity
save / UNSTRUCTURED/
c Data val ues
data unx/0.,2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4.,4./

196 Writing data access code

Instrumenting a simulation code

data uny/0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,0./
data une/2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2.,0./
data connectivity/VISIT CELL HEX, 0,1,2,3,4,5,6,7,
VISIT_CELL_HEX, 4,5,6,7,8,9,10, 11,

VISIT_CELL_PYR, 8,9, 10,11, 12,
VI SI T_CELL_WEDGE, 1, 14,5, 2, 15,6,
VI SI T_CELL_TET, 1,14, 13,5/

end
C ___
c visitgetnesh
C ___

i nteger function visitgetnesh(handl e, donai n, name, | nane)
inmplicit none
character*8 nane
i nt eger handl e, domain, | nane
i nclude "visitfortransi nW2i nterface.inc"
ccc UNSTRUCTURED conmmon bl ock (shared with sinul ate_one_ti nestep)
i nt eger NNCDES, NZONES, LCONN
par anmet er (NNODES = 16)
par anet er (NZONES = 5)
paranmeter (LCONN = 36)
real umx(NNODES), uny(NNODES), unz(NNODES)
i nt eger connectivity(LCONN)
comon / UNSTRUCTURED/ unx, uny, ung, connectivity
ccc | ocal variables
integer h, x, y, z, conn, err

h = VI SI T_I NVALI D_HANDLE
i f(visitstrcnp(nane, | nane, "unstructured3d", 14).eq.0) then
c Create an unstructured nesh here
i f(visitucdmeshal l oc(h).eq.VISIT_OKAY) then

err = visitvardataal |l oc(x)
err = visitvardataal |l oc(y)
err = visitvardataal |l oc(z)
err = visitvardatasetf(x,VISIT_OMER_SI M 1, NNODES, unx)
err = visitvardatasetf(y, VISIT_OMER_SI M 1, NNODES, uny)
err = visitvardatasetf(z,VISIT_OMER_SI M 1, NNODES, unze)
err = visitvardataal |l oc(conn)
err = visitvardataseti (conn, VISIT_ OMWNER _SIM 1, LCONN
connectivity)
err = visitucdnmeshset coordsxyz(h, x, y, 2z)
err = visitucdneshsetconnectivity(h, NZONES, conn)
endi f
endi f
visitgetnesh = h
end

Writing data access code 197

Instrumenting a simulation code

th {cmj
_Dgpth

ol
188

0 13

Figure 5-52: 3D unstructured mesh returned by the previous
code examples

49.1 Polyhedral zonesin an unstructured mesh

Unstructured mesh connectivity can also contain polyhedral zones, which are N-faced
(where N>3) solid cells that can be arbitrarily complex. Polyhedral cells can serve asa
bridge in between cell types or when you split the faces of one cell that needsto connect to
severa adjacent cells aswith an AMR level transition. Vislt breaks up polyhedral cells
into tetrahedrons and pyramids, internally after they are received from the simulation.
Polyhedral cells are described in the connectivity by VI SI T_CELL _POLYHEDRON,
followed by the number of faces, followed by each face. Each polyhedral faceisapolygon
and is represented in the connectivity by the number of nodes in the face, followed by the
node indices that make up the face.

Listing 5-53: polyhedral.c: C-Language example for returning polyhedral zones.

int connectivity[] = {
VI SI T_CELL_HEX,
0,1,5,4,3,2,6,7,
VI SI T_CELL_POLYHEDRON,
9, /* # faces*/
, I*ids*/ 4,5,6,7,
[*ids*/ 8,4,7,14,11,
/*ids*/ 14,7,6, 16, 15,
/*ids*/ 16,6,5,10, 13,
/*ids*/ 10,5,4,8,9,
[*ids*/ 9,8,11,12,

o000~

198

Writing data access code

Instrumenting a simulation code

4, /*ids*/ 10,9, 12, 13,

4, [*ids*/ 12,11, 14,15,

4, /*ids*/ 13,12, 15, 16,
VI SI T_CELL_HEX,

8,9,18,17, 11, 12, 21, 20,
VI SI T_CELL_HEX,

9,10, 19, 18, 12, 13, 22, 21,
VI SI T_CELL_HEX,

11, 12, 21, 20, 14, 15, 24, 23,
VI SI T_CELL_HEX,

12,13, 22, 21, 15, 16, 25, 24

Figure 5-54: Polyhedral zone used to connect other hex zones

410 AMR meshes

AMR stands for adaptive mesh refinement. This term describes a structured mesh where
rectangular regions of zones subdivide uniformly, by afactor, in regions of the mesh
where more detail is required. The newly refined region forms a new mesh, often called a
patch, that can be thought of as an overlay on top of the original coarser data. This
refinement process repeats until the zones of interest are sufficiently small to capture
enough detail about the phenomena being modeled. Since each refined layer overlaysits
parent layer, AMR refinement levels are treated hierarchically. In Vislt, each individual

Writing data access code 199

Instrumenting a simulation code

patch in the hierarchy becomes a separate domain. The meshes for each domain are
themselves just rectilinear meshes and can be returned as such from the mesh data access
callback function.

Level 2

Level 1

Figure 5-55: AMR mesh colored by patch number with level hiearchy shown (right)

410.1 Returning metadata

AMR meshes require some additional metadata to be returned. Since AMR meshes have
both patches and levels those different subset concepts must be mapped to subset types
that Vislt supports. Patches should be mapped to domains and levels should be mapped to
groups, which in Vislt parlance, are groups of domains. You can set the number of groups
by calling Vi sI't _MeshMet aDat a_set NumGr oups inC or

vi si t mdmeshset nungr oups in Fortran. The metadata must contain the patch to
level mapping for each patch, which aids Vislt in determining the AMR hierarchy. You
can set the patch to level mapping for each patch by calling

Vi slt _MeshMet aDat a_addG oupl d fromC, or vi si t nrdnmeshset gr oupi ds
from Fortran. The metadata code listings for setting the patch to level mapping assumes
the example code has defined an integer array called level that contains alevel number for
each domain in the AMR mesh.

The metadata can also be changed to set the domain and group titles and piece names to
names that better represent AMR meshes. For example, the “ Domains’ titlethat is
eventually shown in Vislt’'s Subset window can be changed by setting the mesh
metadata’s domain titleto “ Patches’ . Theindividual domain names can be set but we will
set the domain piece name to cause all of our domains to be named “ patchQ” , “ patchl”,

200

Writing data access code

Instrumenting a simulation code

... and so on. The same type of name substitution can be done for groups so they appear in
Vislt aslevels.

Listing 5-56: amr.c: C-Language example for returning a AMR metadata.

/* Set the first mesh’s properties.*/
i f(Vislt_MeshMetabData_al |l oc(&md) == VI SI T_CKAY)
{

/* Set the nesh’s properties.*/
slt _MeshMet aDat a_set Nanme(mrd, "anr");
sl't_MeshMet aDat a_set MeshType(mud, VI SI T_MESHTYPE_AMR) ;
slt_MeshMet aDat a_set Topol ogi cal Di mrensi on(md, 2);
slt_MeshMet aDat a_set Spati al D nensi on(md, 2);
slt_MeshMet aDat a_set NunDomai ns(nmd, NPATCHES)
slt_MeshMet aDat a_set Donai nTitl e(md, "Patches");
slt_MeshMet aDat a_set Domai nPi eceNanme(md, "patch");
slt_MeshMet aDat a_set Nuntzr oups(nmd, 3);
slt_MeshMet aDat a_set G oupTitl e(md, "Levels");
slt_MeshMet aDat a_set G oupPi eceNane(nmd, "level");
for(i = 0; i < NPATCHES; ++i)

Vi slt_MeshMet aDat a_addG oupl d(md, level [i]);
Vislt _MeshMet aDat a_set XUnits(md, "cni);
Vislt _MeshMet aData_set YUnits(md, "cni);
Vi slt _MeshMet aDat a_set XLabel (nmd, "W dth");
Vi slt _MeshMet aDat a_set YLabel (nmd, "Hei ght");

Vi
Vi
Vi
Vi
Vi
Vi
Vi
Vi
Vi
Vi

Vislt_Sinmul ati onMet abDat a_addMesh(nd, md);

Listing 5-57: famr.f: Fortran-Language example for returning AMR metadata.

c Add a 2D AMR nesh
i f(visitmdneshal | oc(md). eq. VI SI T_OKAY) then

err = visitnmdmeshset nane(nmd, "am", 3)

err = visitmdmeshset neshtype(md, VI SI T_MESHTYPE_AMR)
err = visitnmdnmeshsettopol ogi cal di n{md, 2)

err = visitnmdnmeshsetspatial di m{md, 2)

err = visitnmdmeshset nundomai ns(md, 4)

err = visitnmdmeshsetdomaintitle(md, "patches", 7)
err = visitnmdmeshset domai npi ecenane(md, "patch", 5)
err = visitmdnmeshset nungr oups(md, 3)

err = visitmdnmeshsetgrouptitle(md, "levels", 6)

err = visitnmdnmeshset grouppi ecenane(md, "level", 5)

do 1400 i =1, NPATCHES
err = visitmdnmeshset groupi ds(md, |evel (i))
1400 conti nue

err = visitmdmeshset xunits(md, "cni', 2)

err = visitmdmeshsetyunits(md, "cni', 2)

err = visitmdnmeshset x|l abel (md, "Wdth", 5)
err = visitmdnmeshsetyl abel (md, "Height", 6)
err = visitmdsi maddmesh(nd, nmd)

Writing data access code 201

Instrumenting a simulation code

endi f

4.10.2 Domain nesting

Thereal trick to AMR meshesis
telling Vislt how to heirarchically
group them so Vislt will treat them
as AMR meshes. Part of thisis
achieved by indicating the level
for each patch in the metadata.
Since AMR meshes contain
multiple levels of detail that will
be handled simultaneously, any
given place on the mesh could be
several levelsthick. Vislt avoids
this by snipping out regions of
coarser patches where more-
resolved patchesare available. The
resulting AMR data consist of a
single surface of data at varying
resolutions. In order to perform
this operation, Vislt uses ghost
2021 38,39 zones to skip over zones where
Figure 5-58: AMR mesh zone indexing finer data exist. Consequently,
Vislt must know how patches nest
within one another. For this
purpose, | i bsi mprovidesthe Dormai nNest i ng object. The Domai nNest i ng object
isreturned by a separate data access callback function that can be registered using the
Vi sl t Set Get Domai nNest i ng function.

The Domai nNest i ng object contains the refinement ratios for each level as well as per-
patch IJK indices for each patch. The IJK indices are specified relative to the level in
which the patch exists and a patch must be contained within its parent patch. Our example
AMR mesh has 3 levels and 4 patches. Patch 0, which isin level 0 isa 10x10 rectilinear
grid whose zone indicesrange 0:9in both | and J. Patch 1 isinlevel 1inthe AMR
hierarchy so its possible | and Jranges, were it to cover all of its parent patch, are both
0:19 since thereis arefinement ratio of 2 in both | and J. This means that each successive
level in the AMR mesh will have 2x the number of cellsin | and J. The refinement ratio is
customizable on a per-level basis and can differ for | and J. Taking the refinement ratio
into account, you can see that level 2 would have twice the number of zonesaslevel 1, for
azone range of 0:39. In general, the smallest possible index for alevel is 0 though this
value can’t aways be used if patches are refined offset to their parent’s origin. The largest
possible index is NX*ratio,'®¢-1 for | and NY*ratioy'e"e'-l for Jwhere NX,NY are the
number of zones in the level ; mesh.

202

Writing data access code

Instrumenting a simulation code

Back to the example program, the zone indices for the 4 patches are:

Patch min | max | min J max J
0 0 9 0 9

1 6 19 2 17

2 20 29 8 27

3 30 39 8 27

The example program storesthe | indicesin ther nxext array, stored min followed by
max on a per patch basis. Jindices are stored the same way in ther nyext array. The

| evel array storesthe level to which each patch belongs. Thecpat ch array storesalist
of child patches for each patch with no child patches designated as-1. Thencpat ch
array contains the number of child patches for each patch.

Thefirst step ininitializing a Domai nNest i ng object isto set the number of patches,
levels, and dimensionsinto it using the

Vi sl't _Domai nNesti ng_set _di nensi ons or

vi si t dnesti ngset di nensi ons functions. Next, set the refinement level for each
level inthe AMR hierarchy using the

Vi sl't _Domai nNesti ng_set | evel Refi nenent or

vi si tdnesti ngset| evel refi nement functions. Note that levels must start their
numbering at zero. The next step isto specify the domain nesting for each patch in the
AMR hierarchy. The domain nesting is specified using the patch’s min and max I,J,K
values stored in an integer array. Thelist of child patchesfor the current patch isalso given
as part of the domain nesting information. Domain nesting information for a patch is
recorded using theVi sl t _Domai nNesti ng_set nesti ngFor Pat ch and

Vi si tdnest i ngset nest i ngf or pat ch functions. Like level numbers, patch
numbers begin at zero.

Listing 5-59: amr.c: C-Language example for returning domain nesting.

/* AMR mesh */

#defi ne NPATCHES 4

fl oat rmx[NPATCHES] [2]
10.}};

fl oat rny[NPATCHES] [2]

i nt r mkext [NPATCHES] [2]
i nt r myext [NPATCHES] [2]
i nt | evel [NPATCHES]

i nt ncpat ch[NPATCHES]

i nt cpat ch[NPATCHES] [2]

= {{0., 10.}, {3., 10.}, {5., 7.5}, {7.5,

{{0., 10.}, {1., 9.}, {2., 7.}, {2., 7.}}:
{{0,9}, {6,219}, {20,29}, {30,39}};
{{0,9}, {2,117}, {8,27}, {8,27}};

{0, 1, 2, 2};

{1, 2,0, 0};
{{1!'1}!{2!3}!{'1!'1}1{'1!'1}};

visit_handl e
Si mGet Domai nNest i ng(const char *name, void *cbdata)

{

Writing data access code 203

Instrumenting a simulation code

visit_handle h = VI SI T_I NVALI D_HANDLE;

i f(Vislt_DonmainNesting alloc(&) !'= VISIT_ERROR)
{
#define XM N O
#define YM N 1
#define ZM N 2
#defi ne XMAX 3
#define YMAX 4
#define ZMAX 5
int i, dom nlevels = 3;
int ratios[3] = {2,2,1}, ext[6]={0,0,0,0,0,0}, patch[2]={0,0};

Vi slt _Donmai nNesti ng_set _di mensi ons(h, NPATCHES, nlevels, 2);
Vi slt_Donai nNesting_set | evel Refinenent(h, 0, ratios);
Vi slt_Donai nNesting_set | evel Refinenent(h, 1, ratios);

Vi slt_Donmi nNesting_set | evel Refinenent(h, 2, ratios);

for(dom= 0; dom < NPATCHES; ++don)

{
ext[XM N = rmxext[dom [O];
ext[YMN = rmyext[dom[O0];
ext[ZM N = O;
ext [XMAX] = rmxext[dom[1];
ext[YMAX] = rmyext[dom [1];
ext[ZMAX] = O;
for(i = 0; i < ncpatch[don]; ++i)
patch[i] = cpatch[donm[i];
Vi sl't_Domai nNesti ng_set_nesti ngForPatch(h, dom |evel[don,
pat ch, ncpatch[dom, ext);
}
}
return h;

Listing 5-60: famr.f: Fortran-Language example for returning domain nesting.

i nteger function visitgetdonmai nnesting(nane, | nane)
inmplicit none
character*8 nane
i nt eger I name
i nclude "visitfortransi nV2i nterface.inc"
ccc AVRMESH common bl ock
i nt eger NPATCHES
par amet er (NPATCHES = 4)
real rmx(2, NPATCHES), rny(2, NPATCHES)
i nteger rnxext (2, NPATCHES), rnyext (2, NPATCHES)

204 Writing data access code

Instrumenting a simulation code

Cccc

i nteger | evel (NPATCHES), ncpat ch(NPATCHES)

i nteger cpatch(2, NPATCHES)

common / AMRMESH rnx, rny, rmkext, rnyext, | evel , ncpat ch, cpatch
AMRMESH dat a

data rnx/0., 10., 3., 10., 5., 7.5, 7.5, 10./
data rny/0., 10., 1., 9., 2., 7., 2., 7./
data rnxext/0,9, 6,19, 20,29, 30,39/

data rnyext/0,9, 2,17, 8,27, 8,27/

data level/0, 1, 2, 2/

data ncpatch/1, 2,0, 0/

data cpatch/1,-1,2,3,-1,-1,-1,-1/

ccc |l ocal vars

1700

1800

i nteger XM N, YM N, ZM N, XNVAX, YMAX, ZMAX

paranmeter (XM N = 1)
paranmeter (YMN = 2)
paranmeter (ZMN = 3)
paranmeter (XMAX = 4)
paranmeter (YMAX = 5)
par aneter (ZMAX = 6)

integer h, i, err, dom ratios(3), ext(6), patch(2)
data ratios/2, 2,1/

data ext/0,0,0,0,0, 0/

dat a patch/0, 0/

i f(visitdnestingalloc(h).eq.VISIT_OKAY) then
err = visitdnestingsetdi nensions(h, 4, 3, 2)

err = visitdnestingsetlevelrefinenent(h, 0, ratios)
err = visitdnestingsetlevelrefinenent(h, 1, ratios)
err = visitdnestingsetlevelrefinenent(h, 2, ratios)

do 1800 dom= 1,4

ext (XM N) = rnxext (1, dom
ext(YMN) = rnyext (1, don
ext(ZMN) =0
ext (XMAX) = rnxext (2, dom
ext (YMAX) = rnyext (2, domnm
ext(ZMAX) = 0

do 1700 i =1, ncpat ch(dom
patch(i) = cpatch(i, dom
conti nue
err = visitdnestingsetnestingforpatch(h,dom1,!|evel (don),
pat ch, ncpatch(dom, ext)
conti nue
endi f
vi sit getdonai nnesting = h
end

Writing data access code

205

Instrumenting a simulation code

411 CSG meshes

Vislt supports Constructive Solid Geometry (CSG) meshes. CSG meshes are defined by
volumetric regions that are combined using boolean operators. By combining regionsin
various ways, one can arrive at very complex geometries using a very compact
description. Thefirst step in creating a CSG mesh is to create the set of boundaries that
will be used to create regions. A boundary is a primitive or an analytical surface such asa
plane, cone, sphere, or cylinder. Each boundary is described by a set of coefficients. Once
aboundary has been defined, it isturned into aregion by instancing it using a unary
OUTER or INNER operator. The instanced region defines avolume that is either inside or
outside of the boundary. Once the region is defined, it can be combined with other regions
using boolean operators such as INTERSECT (and) or UNION (or). Once afina region
has been defined, it can be promoted to a“zone”, which is the CSG term for what Vislt
considers adomain.

4.11.1 CSG boundaries

CSG boundaries are primitives and analytical surfaces that define the shape of regions
used in boolean operations. Boundaries are described by a set of coefficients appended to
an array. The types of boundaries that can be used in Vislt's CSG meshes, as well astheir
coefficients, are described in the following tables. The names of the boundary types
contain a suffix that suggests the coefficients required by the boundary.

Suffix Meaning

G generalized form (n values, depends on type)

P Point (3 values x,y,zin 3D. 2 values x,y in 2D)

N Normal (3 values Nx,Ny,Nz in 3D. 2 values Nx,Ny in
2D)

R Radius (1 value)

A Angle (1 value in degrees)

L Length (1 value)

X X-intercept (1 value)

Y Y-intercept (1 value)

Z Z-intercept (1 value)

K Arbitrary integer (1 value)

F Planar face defined by point-normal (6 values)

206

Writing data access code

Instrumenting a simulation code

Boundary Description

VISIT_CSG_QUADRIC_G General quadric with 10 coefficientsfor x2, y2, Z2, xy, yz,
XzZ,%,Y,2,1

VISIT_CSG_SPHERE_PR Sphere defined by 4 coefficients: center point and radius

VISIT_CSG_PLANE_X Plane X=constant with 1 coefficient

VISIT_CSG_PLANE_Y Plane Y =constant with 1 coefficient

VISIT_CSG PLANE Z Plane Z=constant with 1 coefficient

VISIT_CSG_PLANE_PN Plane with 6 coefficients. origin, normal

VISIT_CSG_PLANE_PPP Plane with 9 coefficients. The planeis specified by 3

points in the plane.

VISIT_CSG_CYLINDER _PNLR | Cylinder with 8 coefficients: point, normal, length, radius

VISIT_CSG_CYLINDER_PPR | Cylinder with 7 coefficients: 2 points that make up the
endpoints and a radius perpendicular to the defined line

segment.
VISIT_CSG_CONE_PNLA Cone with 8 coefficients: point, normal, length, angle
VISIT_CSG_CONE_PPA Cone with 7 coefficients: 2 points that make up the end-
points and an angle that opens up from one of the end-
points.

Note that there are more boundary types defined in the VisltinterfaceTypes V2.h header
file which are not yet actually implemented in Vislt. Only the boundary typesin the table
are implemented. This leaves out some commonly-used convenient primitives such as
hexahedra. Hexahedrons in particular can be created using 6 VISIT_CSG_PLANE_PN
planes: 2 for the X direction, 2 for the Y direction, and 2 for the Z direction. The X planes
can isolate arange of X values, Y planes canisolate Y values, and Z planes can isolate Z
values using an INTERSECT operation. Then the X and Y regions can be intersected and
the resulting region can be intersected with the Z region to yield a hexahedron.

4112 CSG operators

CSG meshes are produced by defining regions and combining them using various
operators. The table below contains alist of the most common operators as well as their
usage. Regions are encoded by storing operators and operands into 3 parallel arrays:
typeflags, left, and right. By parallel arrays, we mean that an index in one array
corresponds to an index in the other arrays as well. The typeflags array contains the
operator being used in the operation. The left array contains the index of aboundary or the
index of aregion. The sameistrue for the right array unless the operator being used is a

Writing data access code 207

Instrumenting a simulation code

unary operator, in which case the entry in the right array will contain -1. Suppose the
typeflags, |eft, right arrays already contain region definitionsin indices 0 and 1 and we
want to take their union to produce a new region in index 2. We would insert
VISIT_CSG_UNION into typeflags[2], O into left[2], and 1 into right[2].

Operator Type Description

VISIT_CSG_INNER unary Turn aboundary into aregion where the vol-
ume is enclosed by the boundary.

VISIT_CSG_OUTER unary Turn aboundary into aregion where the vol-
ume exists outside of the boundary.

VISIT_CSG_UNION binary Boolean OR operator. Combine 2 regions into
anew region that is the union of both regions.

VISIT_CSG_INTERSECT binary Boolean AND operator. Create a new region
that isthe intersection of both regions.

VISIT_CSG_DIFF binary Subtract one region from another.

VISIT_CSG_COMPLIMENT | unary Boolean NOT operator. Create a new region
that occupies the opposite volume from the
input region.

4.11.3 Creatinga CSG mesh

Creation of a CSG mesh is athree step process. First, you must create the boundaries that
will be used to build up the regions on which you'll operate. Second, you instantiate the
regions using the boundaries and perform operations on them to arrive at afinal shape.
Third, you take the final shapes and add their region numbers into a zone list so each
region can function as a separate domain in Vislt.

Boundaries are created by populating the boundary type and coefficient arrays. The type
array contains the types of the boundaries. The coefficient array contains the coefficients
for each boundary with one appended into the array after another. For example if you
wanted to add aVISIT_CSG_SPHERE_PR boundary to the CSG definition, you would
add VISIT_CSG_SPHERE_PR to thefirst element in the type array then you would add a
point (3 values) and aradius (1 value) to elements 0,1,2,3 in the coefficients array. The
next boundary’s type would go into element 1 in the type array and its coefficients would
begin at element 4 in the coefficients array.

After boundaries have been created, they must be turned into regions. To turn a boundary
into aregion, you must add the index of the boundary into the left array and -1 into the
right array while adding either the VISIT _CSG_INNER or VISIT_CSG_OUTER
operators into the operators array. All of these values are added at the same element index
in their respective arrays. Once aregion has been defined, it can be operated on by the

208

Writing data access code

Instrumenting a simulation code

various CSG operators by adding its region index into the left or right arrays and adding a
CSG operator in the operators array.

Each completed region can be promoted to a CSG zone, which means that Visit will plot it
asadomain. The entire CSG mesh can be composed of one or more zones but the CSG
description must always contain the definitions of all CSG zones to ensure that it gets
discretized properly. CSG meshes having more than one zone will can operated onin
parallel by Vislt.

4114 CSG example

Boundaries Regions Zones

O

: 0 O
outer
1 1

10, 1 1
2 2 intersect
outer
7
intersect
3 3
outer
9 .
4 4 I
outer —
> S
5 5

outer

Figure 5-61: CSG boundaries, regions, and zones

The CSG example depicted in Figure 5-61 shows awasher and inside (intersecting) of that
washer is another vertical washer which rotates in the simulation. The example is shown
with 2D graphics for smplicity. In the simulation, all of the boundaries are 3D. The
rotation of the vertical washer is achieved by atering the plane origin and normal for
boundaries 4 and 5. The washers are created by a hierarchy of CSG operations. Operations
0 through 5 create regions from boundaries. Operation 6 intersects regions 0 and 1 to
create a hollow sphere. Operations 7 intersects regions 2 and 3 to create a slab, as does
operation 8. Operation 9 unites two slabs to form an extruded “plus sign”. Operation 10

Writing data access code 209

Instrumenting a simulation code

intersects the hollow sphere from operation 6 and the plus sign from operation 9 to
produce the two washers of our final shape, shown in Figure 5-62.

Figure 5-62: CSG mesh example

The code needed to produce the CSG mesh in this example is shown in the following code
listing.

Listing 5-63: csg.c: C-Language example for returning a CSG mesh.

/*************************** CSG Nbsh Val’l abl es *****************/

doubl e csg extents[] = {-11., -11., -11., 11., 11., 11.};

/* CSG Boundaries */

int csg_bound types[] = {
VI SI T_CSG_SPHERE_PR
VI SI T_CSG_SPHERE_PR
VI SI T_CSG_PLANE_PN
VI SI T_CSG_PLANE_PN
VI SI T_CSG_PLANE_PN
VI SI T_CSG_PLANE_PN

}s

float csg_bound coeffs[] = {

0., 0., 0., 8., /* sphere 1%/

0., 0., 0., 10., /* sphere 2%/

0., 2., 0., 0., -1., 0., /* plane 1 point, nornal*/
0., -2., 0., 0., 1., 0., /* plane 2 point, nornal*/
2., 0., 0., -12., 0., 0., /* plane 3 point, nornal*/
-2., 0., 0., 1., 0., 0. [/* plane 4 point, nornal*/

210

Writing data access code

Instrumenting a simulation code

int csg_num bound_coeffs = sizeof (csg _bound _coeffs) / sizeof (float);
i nt csg_num bound_types = sizeof (csg_bound_types) / sizeof(int);

/* CSG Regi ons */
int csg_region_operations[] =

{
VI SI T_CSG_OUTER, /* 0: outside of inner sphere */
VI SI T_CSG _| NNER, /* 1. inside of outer sphere */
VI SI T_CSG_QUTER, /[* 2: plane 1 */
VI SI T_CSG_QUTER, /* 3: plane 2 */
VI SI T_CSG_QUTER, /* 4: plane 3 */
VI SI T_CSG_QUTER, /* 5: plane 4 */
VI SI T_CSG_| NTERSECT, /* 6: intersection of sphere 0,1 */
VI SI T_CSG_| NTERSECT, /* 7: intersection of planes 1,2 */
VI SI T_CSG_| NTERSECT, /* 8: intersection of planes 3,4 */
VI SI T_CSG_UNI ON, /* 9 add the 2 blocks together */
VI SI T_CSG_| NTERSECT /* 10: intersect shell with slabs*/
1
/* 1 ndex 0 1 3 4 5 6 7 8 9 10*/

2
int csg_leftids[] = {0, 1, 2, 3, 4, 5 0, 2, 4, 7, 6};
int csg_rightids[] = {-21, -1, -1, -1, -1, -1, 1, 3, 5, 8, 9},
int csg_numregion_operations = sizeof(csg_region_operations) /
si zeof (int);

/* CSG Zones */
int csg_zonelist[] = {10};
int csg_nzones = sizeof(csg_zonelist) / sizeof(csg_zonelist[0]);

/*************************** CSG |VESh Varl abl es *******************/

visit_handl e
Si mGet Mesh(i nt domai n, const char *nanme, void *chdata)

{
visit_handle h = VI SI T_I NVALI D_HANDLE;

i f(strcnp(nanme, "csg") == 0)
{
if(Vislt_CSGQGwesh_alloc(&) !'= VISIT_ERROR)
{
visit_handl e typeflags, leftids, rightids, zonelist;
vi sit_handl e boundaryTypes, boundaryCoeffs;

/* Fill in the CSG nesh’s data val ues. */

Vislt_Vari abl eDat a_al | oc(&oundaryTypes);

Vi slt_Vari abl eDat a_set Dat al (boundaryTypes, VISI T_OMER SI M
1, csg_num bound_types, csg_bound_types);

Vi sl't _CSGwesh_set Boundar yTypes(h, boundaryTypes);

Vislt_Variabl eData_al | oc(&oundar yCoeffs);

Vi slt_Vari abl eDat a_set Dat aF(boundar yCoeffs, VISIT_OMER SI M
1, csg_num bound_coeffs, csg_bound_coeffs);

Vi slt _CSGvesh_set Boundar yCoef f s(h, boundaryCoeffs);

/* Set the extents */

Writing data access code 211

Instrumenting a simulation code

Vislt _CSGvesh_set Extents(h, csg_extents, csg_extents+3);

/* Set the regions */

Vislt_Variabl eData_al | oc(&t ypefl ags);

Vislt_Vari abl eDat a_set Dat al (typeflags, VISIT_OMER_SIM
1, csg_numregi on_operations, csg_regi on_operations);

Vislt _Variabl eData_al |l oc(& eftids);
Vislt_Variabl eData_setDatal (I eftids, VISIT_ OMNER SIM
1, csg_numregi on_operations, csg_leftids);

Vislt _Variabl eData_al |l oc(&rightids);
Vislt _Variabl eData_setDatal (rightids, VISIT OMER SI M
1, csg_numregi on_operations, csg_rightids);

Vi slt _CSGvesh_set Regi ons(h, typeflags, leftids, rightids);

/* Set the zonelist */

Vislt _Variabl eData_al | oc(&zonelist);

Vislt_Variabl eDat a_set Datal (zonelist, VISIT _OMER SI M
1, 1, csg_zonelist);

Vislt _CSGvesh_set Zonel i st (h, zonelist);

return h;

412 Interleaved coordinates

All of the mesh examples so far have used separate coordinate arrays for the X, Y, and Z
coordinates. For certain mesh types, it is also possible to provide coordinates using one
array that contains all XY or XY Z coordinates, an approach called interleaved
coordinates. Interleaved coordinates are specified in an array like thisfor 2D:
X0:Y0:X1,Y1:---XnYn @nd like thisfor 3D: Xo,Y0,20,X1,Y1,Z1;---Xn:Yn»Zn- T e mesh objects that
support interleaved coordinates have functions for providing interleaved coordinates and
these functions can be called instead of the typical functions that specify XY or XYZ
coordinates. The coordinates are passed to these functionsasasingle Var i abl eDat a
object with 2 or 3 components, depending on the mesh’s dimensionality.

Meshtype | Function

Curvilinear | int Vislt_CurvilinearMesh_setCoords2(visit_handle obj,
int dimg[2], visit_handle coords);

int Vislt_CurvilinearMesh_setCoords3(visit_handle obj,
int dimg[3], visit_handle coords);

212

Writing data access code

Instrumenting a simulation code

Meshtype | Function

Point int Vislt_PointMesh_setCoords(visit_handle obj,
visit_handle coords);

Unstruc- int Vislt_UnstructuredMesh_setCoords(visit_handle obj,
tured visit_handle coords);

413 Data access function for variables

This chapter has so far shown how to instrument a simulation code so Vislt can connect to
it and read out meshes so they can be plotted. This section will illustrate how to add adata
access function that lets Vislt access your simulation’s variable data. Reading variable data
requires a new data access function. In this case, you will register a new data access
function by callingthe Vi sl t Set Get Var i abl e function. If your simulation iswritten
in Fortran, you must implement thevi si t get var i abl e function to return your
simulation’s variable data. This section will show how to return your simulation’s variable
data so they can be visualized with Vislt.

4.13.1 Returningasimulation’sdata array

The data access function for variablesreturnsaVar i abl eDat a object, which was
introduced in Section 4.5.2. The Var i abl eDat a object is asimple wrapper the array
that you want to return and includes alittle information about the array, including itstype,
number of components, number of tuples, and which program owns the array data. The
owner flag indicates whether or not Vislt will be responsible for freeing the variable data
array when it isno longer needed. If you pass VI SI T_OANER_SI Mthen Vislt will never
free the data because the simulation owns the variable’'s memory. If you pass

VI SI T_OMER_VI SI T then Vislt will free the variable’s memory when it is no longer
needed. VI SI T_OWNER _COPY is a convenience owner type that makes it easy to pass
stack datato Vislt since it copies the data that were passed so they can be freed later by
Vislt.

Returning variable datais as simple as returning an array with number of components set
to 1 and the number of tuples set to the array length. Other types of variables such as
vectors or tensors will have their component count increased to 2 or 3 for vectors, 9 for
tensors, and any number greater than 1 for array data or label data. Data are stored in the
array such that data for each tuple are stored before data for the next tuple appearsin the
array: (tupleOcompO, tupleOcompl, tupleOcomp?2, tuplelcompO, tuplelcompl,
tuplelcomp2,...). The Cinterfacefor | i bsi mprovides different functions for setting
different types of datainto aVar i abl eDat a object. The functions are called:

Vi slt_Vari abl eDat a_set Dat aCfor character data,

Vi slt_Vari abl eDat a_set Dat al for integer data,

Writing data access code 213

Instrumenting a simulation code

Vi slt_Vari abl eDat a_set Dat aF for float data, and
Vi slt_Vari abl eDat a_set Dat aD for double precision data.

Listing 5-64: scalar.c: C-Language example for returning a variable. !

i nt rmesh_dinms[] = {4, 5, 1};

float zonal[] = {1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.};

int cnesh_dinms[] = {4, 3, 2};

doubl e nodal [2][3][4] = {
{{1.,2.,3.,4.},{5.,6.,7.,8.},{9.,10.,11., 12}},

{{13.,14.,15.,16.},{17.,18.,19.,20.},{21.,22.,23.,24.}}
b
visit_handl e

Si mGet Vari abl e(i nt domai n, const char *nane, void *cbdata)

{
visit_handle h = VI SI T_I NVALI D_HANDLE
i nt nConponents = 1, nTuples = O;
if(Vislt_VariableData_all oc(&) == VISIT_COKAY)
{
i f(strcnp(nane, "zonal") == 0)
{
nTuples = (rmesh_dinms[0]-1) * (rmesh_dins[1]-1);
Vislt_Vari abl eDat a_set Dat aF(h, VISIT_OMER _SIM nComponents,
nTupl es, zonal);
}
el se if(strcnp(nane, "nodal") == 0)
{
nTupl es = cnmesh_di ns[0] * cresh_di ns[1] *
cmesh_di ns[2] ;
Vislt_Vari abl eDat a_set Dat aD(h, VI SIT_OMER _SIM nConmponents,
nTupl es, (doubl e*)nodal);
}
}
return h;
}

The Fortran interface providesthevi si t var dat aset c, vi si t vardat aset i,
vi sitvardatasetf,andvi sitvardat aset d functionsfor passing your

simulation’s scalar data back to Vislt. The functions behave the same as their C
equivalents.

Listing 5-65: fscalar.f: Fortran language example for returning a variable. !

i nteger function visitgetvari abl e(handl e, donai n, name, | nane)
inmplicit none
character*8 nane

214 Writing data access code

Instrumenting a simulation code

Cccc

Cccc

Cccc

Cccc

o0

o0

i nt eger handl e, domain, | nane

i nclude "visitfortransi nM2i nterface.inc"
RECTMESH dat a

i nteger NX, NY

paranmeter (NX = 4)

paranmeter (NY = 5)

i nteger rndinms(3)

real zonal (NX-1, NY-1)

CURVMESH dat a

i nteger CNX, CNY, CNz

paranmeter (CNX = 4)

paranmeter (CNY = 3)

paranmeter (CNZ = 2)

i nt eger cndi nms(3)

doubl e precision nodal (CNX, CNY, CNZ)

| ocal vars

integer h, nvals, err

Dat a

data rndins /4, 5, 1/

data zonal/1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12./
dat a cndi nms/ CNX, CNY, CNz/

data nodal/1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13., 14., 15.
16.,17.,18.,19.,20.,21.,22.,23.,24./

h = VI SI T_I NVALI D_HANDLE
if(visitstrcnmp(nane, | name, "zonal", 5).eq.0) then

A zonal variable has 1 | ess value in each di nension as there
are nodes. Send back REAL data.

i f(visitvardataall oc(h).eq.VISI T_COKAY) then
nvals = (rimdins(1)-1) * (rndins(2)-1)
err = visitvardatasetf(h, VISIT OMER SIM 1, nval s, zonal)
endi f
el seif(visitstrcnp(nanme, |nane, "nodal", 5).eq.0) then

A nodal variable has the sane nunber values in each di nension
as there are nodes. Send back DOUBLE PRECI SI ON dat a.

i f(visitvardataall oc(h).eq.VISI T_COKAY) then
nvals = cndins(1l) * cndins(2)* cndins(3)
err = visitvardatasetd(h, VISIT OMER SIM 1, nval s, nodal)
endi f
endi f

visitgetvariable = h
end

The variable data access functions in the previous examples build on some of the earlier
mesh data access function examples, specifically the examples that returned rectilinear
and curvilinear meshes. The zonal variable returned in the examplesin this section return
data defined on the “mesh2d” rectilinear mesh. The nodal variable returned in the

Writing data access code 215

Instrumenting a simulation code

examplesin this section return data on the “mesh3d” curvilinear mesh. Examples of both
variables are shown in Figure 5-66.

Figure 5-66: Examples of scalar variables returned by a variable data access function.

4.14 Data access function for curves

This section illustrates how to add a data access function that lets Vislt access your
simulation’s curve data. Reading curve data requires a new data access function, which is
registered using the Vi sl t Set Get Cur ve function. If your smulation iswritten in
Fortran, you must implement thevi si t get cur ve function to return your simulation’s
curve data.

The data access function for curves returns a Cur veDat a object, which smply contains
handlesto 2 Var i abl eDat a objects that contain the coordinates. This section shows
how to create a data access function for curves so your smulation’s curve data are
availablein Visit.

4.14.1 Adding a curve data access function

Adding a curve data access function means that you have to first write afunction and pass
ittoVi sl t Set Get Cur ve. If you program in C, the curve data access function takes the
name of a curve object and a user-defined pointer as arguments. The basic procedure for
returning curve dataisto first check the incoming name against the names of the curves
that your simulation is prepared to return and when oneis found, returnit to Visltina
Cur veDat a object. If your curve data access routine does not recognize the name of the
curve then you can return VI SI T_| NVALI D_HANDLE instead of returning a

Cur veDat a object.

Listing 5-67: curve.c: C-Language example for installing a curve data access function.

visit_handl e

216

Writing data access code

Instrumenting a simulation code

Si mGet Curve(const char *nane, void *cbdata)
{
int h = VISIT_I NVALI D_ HANDLE
simul ation_data *sim= (simulation_data *)cbdata

i f(strcnp(nanme, "sine") == 0)
{
if(Vislt_CurveData_alloc(&) !'= VISIT_ERROR

{

vi sit_handl e hxc, hyc;

/* Gve the arrays to Vislt. Vislt will free them */
Vislt _Variabl eDat a_al | oc(&xc);

Vislt _Variabl eData_al | oc(&hyc);
Vislt_Vari abl eDat a_set Dat aF(hxc, VISIT_ OMWNER SIM 1, NPTS
Sim >Xx);

Vislt_Vari abl eDat a_set DataF(hyc, VISIT OANER SIM 1, NPTS
sim>y);

Vislt_CurveDat a_set CoordsXY(h, hxc, hyc);

return h;

In order to return curve data from a Fortran simulation, you must implement the

Vi si t get cur ve function. The function takes 2 arguments: the name of the curve and
the length of that name string, respectively. Asin the C interface, thevi si t get cur ve
function must check the incoming names against the names of the curves that the
simulation has exposed to Vislt viametadata. You can usethevi si t st r cnp function to
match the incoming name against the names of the known curves.

Listing 5-68: fcurve.f: Fortran language example of a curve data access function.

i nteger function visitgetcurve(nane, | nane)

implicit none

character*8 nane

i nt eger | nanme

i nclude "visitfortransi nW2i nterface.inc"
ccc CURVE common bl ock

i nteger NPTS

par aneter (NPTS = 10000)

real pmx(NPTS), pny(NPTS)

conmon / CURVE/ pnx, pny
ccc | ocal vars

i nteger h, hx, hy, err

Writing data access code 217

Instrumenting a simulation code

h = VI SI T_I NVALI D_HANDLE
if(visitstrcnp(nanme, |[name, "sine", 4).eq.0) then
i f(visitcurvedataalloc(h).eq.VISIT_OKAY) then

err = visitvardataall oc(hx)
err = visitvardataall oc(hy)
err = visitvardatasetf(hx, VISIT_ OMER SIM 1, NPTS, pnx)
err = visitvardatasetf(hy, VISIT_ OMNER_SIM 1, NPTS, pny)
err = visitcurvedatasetcoordsxy(h, hx, hy)
endi f
endi f
visitgetcurve = h
end

Both of the code examples for returning curve data produce a sine curve (code to set X,Y
values for the sine curve is not shown), shown in Figure 5-69.

Figure 5-69: Sine curve produced by the curve data access
function example programs.

415 Data access function for materials

This section illustrates how to add a data access function that lets Vislt access your
simulation’s material data. Reading material data requires a new data access function,
which isregistered using the Vi sl t Set Get Mat eri al function. If your smulation is

218

Writing data access code

Instrumenting a simulation code

written in Fortran, you must implement thevi si t get mat eri al function to return
your simulation’s material data.

The data access function for materialsreturnsaMat er i al Dat a object, which containsa
list of material names as well as material datafor each cell in your mesh. The number of
cellsin the mesh is specified usingthe Vi sIt _Mat eri al Dat a_appendCel | s
function, which also tells SimV 2 to expect you to add material information to the

Mat er i al Dat a object using functions that add material data on a per cell basis. Note
that Mat er i al Dat a objects are populated per cell to prevent errors that are common
when providing all of the datain bulk. Material names are assigned a material number
usingtheVi sl't _Mat eri al Dat a_addMat eri al function. The material number that
is returned must be used to identify the material in subsequent function calls that provide
material data about cells. Cells which contain a single material are known as clean cells
while cells with more than one material are known as mixed cells. The
Vislt_Material Data_addC eanCel | function isused to add the data for clean
cellsandtheVi sI't _Mat eri al Dat a_addM xedCel | functionisused to add data
for mixed cells. In the case of mixed cells, alist of material ids (as returned from
Vislt_Material Dat a_addMat eri al) and their relative volume fractions are
passed. The volume fractions indicate a percentage of the cell occupied by a given
material.

Listing 5-70: material.c: C language example of a material data access function.

visit_handl e
Si mGet Materi al (i nt domai n, const char *nane, void *cbdata)

{
visit_handle h = VI SI T_I NVALI D_HANDLE;

/* Allocate a Vislt_Material Data */
if(Vislt_MaterialData_alloc(&) == VISIT_CKAY)
{

int i, j, m cell =0, arrlen = 0;

int nmats, cellnmat[10], matnos[3]={1, 2, 3};

float cell matvf[10];

/* The matlist table indicates the nmaterial nunbers that are

* found in each cell. Every 3 nunbers indicates the naterial
* nunbers in a cell. A material nunmber of O neans that the
* material entry is not used.

*/

int matlist[NY-1][NX-1][3] = {

{{3,0,0},{2,3,0},{1,2,0},{1,0,0}},
{{3,0,0},{2,3,0},{1,2,0},{1,0,0}},
{{3,0,0},{2,3,0},{1,2 3},{1,2, 0}}
b

/* The mat _vf table indicates the material volune fractions
* that are found in a cell.

*/

float mat _vf[NY-1][NX-1][3] = {

Writing data access code 219

Instrumenting a simulation code

{{1.,0.,0.},{0.75,0.25,0.}, {0.8125,0.1875, 0.},{1.,0.,0.}},
{{1.,0.,0.},{0.625,0.375,0.},{0. 5625, 0.4375,0.}, {1.,0.,0.}},
{{1.,0.,0.},{0.3,0.7,0.}, {0.2,0.4,0.4}, {0.55,0.45,0.}}
}s

/* Tell the object we’'ll be adding cells to it using add*Cell
functions */
Vislt_Material Data_appendCel | s(h, (NX-1)*(NY-1));

/* Fill in the Vislt_MaterialData */

Vislt_Material Data_addMat eri al (h, nmat Nanes[0], &matnos[O0]);
Vislt_Material Data_addMat eri al (h, nmat Nanes[1], &matnos[1]);
Vislt_Material Data_addMat eri al (h, nmat Nanes[2], &mratnos[2]);

for(j =0; j < NY-1; ++4))

{

for(i = 0; i < NX-1; ++i, ++cell)

{
nmats = 0;
for(m=0; m< 3; ++n)
{
if(matlist[j][i][mM > 0)
cel lmat[nmats] = matnos[matlist[j][i]l[m - 1];
cel lmatvf[nmats] = mat_vf[j][i][m;
nmat s++;
}
}
if(nmats > 1)
Vislt_Material Data_addM xedCel | (h, cell, cell mat,
cell matvf, nmats);
el se
Vislt_Material Data_addC eanCel | (h, cell, cellmt[0]);

}

}
return h;

Apart from using some functions with dlightly different names, the Fortran version of a
material data access function isnearly identical to the C version. The algorithm for adding
material dataisthe same. First, call vi si t mat dat aappendcel | s to alocate a
number of cellsfor the material data. Next, get a material id for the material name using
thevi si t mat dat aaddmat function. Finaly, build up per cell material information

220

Writing data access code

Instrumenting a simulation code

and add it to the Mat er i al Dat a object using thevi si t mat dat aaddm xedcel |
andvi si t mat dat aaddcl eancel | functions.

Listing 5-71: fmaterial.f: Fortran language example of a material data access function.

i nteger function visitgetnaterial (domain, nane, | nane)
inmplicit none
character*8 nane
i nt eger domai n, | name
i nclude "visitfortransi nW2i nterface.inc"

ccc RECTMESH
i nteger NX, NY
par anmet er (NX
par anmeter (NY

5)
4)

c The matlist table indicates the material nunbers that are found in
each cell. Every 3 nunbers indicates the naterial nunbers in a cell
¢ A material nunber of O nmeans that the material entry is not used.
integer matlist(3, NX-1, NY-1
data matlist/3,0,0,2,3,0,1,2
3,0,0,2,3,0,1, 2,
. 3,0,0,2,3,0,1,2
¢ The mat _vf table indicates the mate
c found in a cell
real mat_vf(3, NX-1, NY-1)
data mat _vf/1.,0.,0.,0.75,0.25,0.,0.8125,0. 1875, 0.,1.,0.,0.
1.,0.,0.,0.625,0.375,0.,0.5625,0.4375,0.,1.,0.,0.
1.,0.,0.,0.3,0.7,0.,0.2,0.4,0.4,0.55,0.45,0./

o

1,0,0
1,0,0
1,2,0
rra

)

0

0,
» 3,

ial volune fractions that are

Size the material object so it has the right dinmensions (equal to
the nunber of cells in the nesh. Unstructured grids would have
Incells, 1,1/ size for the material. That neans that the cellid array
woul d have one linear index inits first elenent.

integer err, I, J, m cellid, nmats, h

i nteger matno(3), cell mt(3)

real cell matvf(3)

h = VI SI T_I NVALI D_HANDLE

O 000

err = visitnatdataal |l oc(h)

err = visitmatdataappendcells(h, (NX-1) * (NY-1))
err = visitnatdataaddmat (h, "Water", 5, matno(1))
err = visitnatdataaddmat (h, "Menbrane", 8, matno(2))
err = visitnatdataaddmat(h, "Air", 3, matno(3))
cellid =0

do 2020 J=1, NY-1
do 2010 =1, NX-1
nmats = 0
do 2000 n¥1, 3
if(matlist(ml,J).gt.0) then
nmats = nmats + 1

Writing data access code 221

Instrumenting a simulation code

cellmt(nmats) = matno(matlist(ml,J))
cell mtvf(nmats) = mat_vf(ml,J)
endi f
2000 conti nue
if(nmats.gt.1) then
err = visitnatdataaddm xedcel | (h
cellid, cellmt, cellmtvf, nmats)
el se
err = visitmnatdataaddcl eancel | (h
cellid, cellmt)
endi f
cellid =cellid + 1
2010 conti nue
2020 conti nue

visitgetmaterial = h
end

Figure 5-72: Material data returned from data access function

416 Data accessfunction for thedomain list

Thedomain list isan object that tells Vislt how many domainsthere arein your simulation
and to which processors they belong. Domain lists are used by Vislt's load balancer to
assign work to various processors when running in parallel. The domain list data access

222 Writing data access code

Instrumenting a simulation code

function must be provided if your parallel smulation isto provide data to Vislt. Since
most parallel simulations only ever process a single domain’s worth of data, the domain
list will almost always contain a single domain, though the total number of domainsisfree
to change. Note that you must provide adomain list when you run aparallel simulation so
Vislt’s load balancer can retrieve domains from the appropriate simulation processors.
Serial simulations do not need to implement a domain list callback function.

If you program in C and you are writing a parallel simulation then you must create a new
function and register it using the Vi sl t Set Get Domai nLi st function. Most of the
time, asimulation will have only a single domain per processor so the domain list will
consist of just the rank of the processor within the global communicator.

Listing 5-73: C-Language example for returning a domain list.

visit_handl e
Si mGet Domai nLi st (const char *nanme, void *cbhdat a)

{
i nt par_size, par_rank;
visit_handl e h = VI SI T_I NVALI D_HANDLE;
MPI _Comm r ank(MPI _COVWM WORLD, &par _rank);
MPI _Comm si ze(MPI _COW WORLD, &par _si ze);
i f(Vislt_DonmainList_alloc(&) !'= VISIT_ERROR)
{
visit_handl e hdl;
Vislt _Variabl eData_al | oc(&hdl);
Vislt _Variabl eData_set Datal (hdl, VISIT_OANER _COPY, 1, 1,
par _rank) ;
Vi slt _Donmi nLi st _set Dormai ns(h, par_size, hdl);
}
return h;
}

If you use the Fortran interface then you must implement the vi si t get donai nl i st
function. Thevi si t get domai nl i st function is called when Vislt needs the number
and distribution of the domainsin use by your ssmulation. You can provide this
information by creating aDormai nLi st object using thevi si t domai nli stal | oc
function, and setting datainto it using vi si t domai nl i st set donai ns. The domain
list data consists of aVar i abl eDat a object that wraps an array of integers. In the case
where each processor has a single domain, you need only create wrap an array that
contains 1 value: the rank of the current processor.

Listing 5-74: fscalarp.f: Fortran language example for returning a domain list.

c visitgetdonainli st

Writing data access code 223

Instrumenting a simulation code

i nteger function visitgetdomainlist()

inmplicit none

i nclude "visitfortransi nM2i nterface.inc"
ccc PARALLEL state comon bl ock

i nteger par_rank, par_size

common / PARALLEL/ par_rank, par_size
ccc | ocal vars

integer h, dl, err

c Tell Vislt that there are as many domai ns as processors and this
c processor just has one of them
h = VI SI T_I NVALI D_HANDLE
i f(visitdomainlistalloc(h).eq.VISIT_OKAY) then
i f(visitvardataall oc(dl).eq.VISIT_OKAY) then
err = visitvardataseti(dl, VISIT OONER SIM 1, 1,
par _r ank)
err = visitdomainlistsetdomains(h, par_size, dl)
endi f
endi f
visitgetdomainlist = h

end

224 Writing data access code

|ndex

A

avtM aterial 137

B

BOV fileformat 9
BOV header file 10
Brick of Floats 10
Brick of Values 10

C

cmake 98

Command line argument -clobber_vlogs 103
Command line argument -debug 104
Command line argument -debug 5 103
Creating anew Silo file 16

CSG meshes 206

CSG operators 207

Curvefileformat 12

CurveData 216

Cycle 19

Cycles 129

D

Data extents 72, 134
Dealing with time 18
Debugging logs 103
Debugging your plugin 103
dlopen 147

Double precision 47
Dynamic load balancing 142

E

EMPTY keyword 54
ExpressionMetaData 178

G

Ghost zones 76, 139, 141

H

HDFS5 files 13

226

|

Inspecting Silo files 16
Interleaved coordinates 212

L

LD _LIBRARY_ PATH 167

libsim - VisltAttemptToCompleteConnection
155

libsim - VisltControlInterface V1.h 147
libsim - VisltDetectlnput 155

libsim - VisltDisconnect 156

libsim - visitfortransiminterface.inc 147

libssm - VisltInitializeSocketAndDumpSim-
File 149, 167

libssim - VisltProcessEngineCommand 155,
156

libsim - VisltSetBroadcastIntFunction 151
libsim - VisltSetBroadcastStringFunction 151
libsim - VisltSetCommandCallback 180
libsim - VisltSetParallel 151

libsim - VisltSetParallelRank 151

libsim - VisltSetupEnvionment 149

M

MaterialData 219
MaterialMetaData 177
Materials 83, 84, 85, 86, 137
MeshMetaData 173

MPI 141

N

NETCDF files 13

O

Option lists 19

P

Plain text ASCII files 12

Plugin development - ActivateTimestep 142
Plugin development - Auxiliary data 134
Plugin development - avtDatabaseMetaData
107

Plugin development - Curvilinear meshes 117
Plugin development - expression metadata 112
Plugin development - GetAuxiliaryData 134,
135

Plugin development - GetMesh 102, 113, 115,
117, 119, 120, 121, 123

Plugin development - GetVar 102, 126

Plugin development - GetVectorVar 102, 127
Plugin development - libE 91, 141

Plugin development - libl 91

Plugin development - libM 91

Plugin development - material metadata 111
Plugin devel opment - mesh metadata 107
Plugin development - MTMD 92

Plugin development - MTSD 92

Plugin development - Parallelizing your reader
141

Plugin development - Point meshes 119
Plugin development - PopulateDatabaseM eta-
Data 102, 106, 126, 127

Plugin development - Rectilinear meshes 115
Plugin development - Returning a mesh 113
Plugin development - Returning a scalar vari-
able 126

Plugin development - Returning a vector vari-
able 127

Plugin development - Returning cycles and
times 129

Plugin development - Returning ghost zones
139

Plugin development - Returning materials 137
Plugin development - scalar metadata 110
Plugin development - STMD 92

Plugin development - STSD 92

Plugin development - Unstructured meshes 121
Plugin development - Using a VTK reader
class 129

Plugin development - vector metadata 111
Plugin development - xml2cmake 96

Plugin development - xml2info 96

Plugin development - xml2makefile 99

Plugin development - xml2plugin 96

Plugin development - XMLEdit 92

PointMesh 192

S

Silo9

Silo - browser 16

Silo- DB_CHAR 40

Silo- DB_F77NULL 21

Silo- DB_FLOAT 39

Silo- DB_HDF5 17

Silo- DB_NODECENT 40
Silo- DB_NONCOLLINEAR 24
Silo- DB_PDB 17

Silo- DB_ZONECENT 40

Silo - DBAddOption 19

Silo - DBCresate 16

Silo - DBFreeOptlist 19, 34, 46
Silo - DBMakeOptlist 19, 34, 46
Silo- DBOPT_UNITS 46

Silo - DBPutdefvars 47

Silo - dbputdefvars 48

Silo - dbputmat 87

Silo - DBPutMaterial 86

Silo - dbputmmesh 51

Silo - DBPutMultimesh 50

Silo - DBPutMultivar 52, 74
Silo - dbputpm 27

Silo - DBPutPointmesh 26

Silo - DBPutPointVarl 43

Silo - dbputgm 21, 23, 24, 26
Silo - DBPutQuadmesh 20, 21, 24, 83
Silo - DBPutQuadvarl 37, 39, 40, 46
Silo - dbputqvl 40

Silo - DBPutUcdmesh 30

Silo - DBPutUcdvarl 45, 46
Silo - dbputuvl 45

Silo - DBPutZonelist 30

Silo - dbset2dstrien 48

Silo - header files 14

Silo - linking with 14
SimulationM etaData 172
SimV 2 database reader plugin 169
Spatial extents 75, 136

Static load balancing 141
Strategies 2

T

Time 19
Times 129
topological dimension 107

228

U

Units 46

\Y%

VariableData 185, 213

Vislt CSGMesh_setBoundaryCoeffs 211
Vislt CSGMesh setBoundaryTypes 211
Vislt CSGMesh_setExtents 212

Vislt CSGMesh_setRegions 212

Vislt CSGMesh_setZonelist 212
Vislt_CurveMetaData aloc 177
Vislt_CurveMetaData setName 177
Vislt_CurveMetaData setXLabel 177
Vislt_CurveMetaData setXUnits 177
Vislt_CurveMetaData setY Label 177
Vislt_CurvilinearMesh_alloc 189

Vislt DomainNesting_set_dimensions 203,
204

Vislt_ DomainNesting_set |evel Refinement
203, 204

Vislt_ DomainNesting_set_nestingForPatch
203, 204

Vislt_ExpressonMetaData alloc 178
Vislt_ExpressionMetaData_setDefinition 178
Vislt_ExpressionMetaData_setName 178
Vislt_ExpressionMetaData_setType 178
Vislt_MateriaData_addCleanCell 219, 220
Vislt_MateridData_addMaterial 219, 220
Vislt_ MateridData_addMixedCell 219, 220
Vislt MaterialData_appendCells 219, 220
Vislt_MateridMetaData_addMaterialName
178

Vislt_MaterialMetaData alloc 177
Vislt_MateriaMetaData_setMeshName 178
Vislt_MaterialMetaData_setName 177
Vislt_ MeshMetaData addGroupld 200, 201

Vislt_ MeshMetaData alloc 174

Vislt MeshMetaData setDomainPieceName
201

Vislt MeshMetaData setDomainTitle 201
Vislt MeshMetaData setGroupPieceName
201

Vislt MeshMetaData setGroupTitle 201
Vislt MeshMetaData setMeshType 174
Vislt_ MeshMetaData setName 174

Vislt MeshMetaData setNumGroups
201

Vislt MeshMetaData_setSpatial Dimension
174

Vislt MeshMetaData setTopological Dimens
on 174

Vislt_ MeshMetaData_setXLabel 174

Vislt MeshMetaData setXUnits 174

Vislt MeshMetaData setY Label 174

Vislt MeshMetaData setY Units 174
Vislt_MeshMetaData _setZlL abel 174

Vislt. MeshMetaData setZUnits 174
Vislt_PointMesh _alloc 192
Vislt_PointMesh_setCoordsXY 192
Vislt_PointMesh_setCoordsXYZ 192, 193
Vislt_RectilinearMesh_alloc 186
Vislt_RectilinearMesh_setCoordsXY 186, 187
Vislt_RectilinearMesh_setCoordsXY Z 186
Vislt_RectilinearMesh_setReal Indices 186
Vislt_ScalarMetaData 175

Vislt_ SimulationMetaData_addCurve 177
Vislt_ SimulationMetaData_addExpression
178

Vislt_SimulationMetaData_addMaterial 178
Vislt_SimulationMetaData_addMesh 174
Vislt_SimulationMetaData_addVariable 176
Vislt_ SimulationMetaData alloc 172

Vislt SimulationMetaData_setCycleTime 172
Vislt_SimulationMetaData setMode 172
Vislt_UnstructuredMesh_alloc 196
Vislt_UnstructuredMesh_setConnectivity 196
Vislt_UnstructuredMesh_setCoordsXY 194
Vislt_UnstructuredMesh_setCoordsXYZ 194,
196

Vislt_UnstructuredMesh_setRealIndices 195
Vislt VariableData alloc 187

Vislt VariableData setDataC 213

200,

229

Vislt VariableData setDataD 214

Vislt VariableData setDataF 187, 214
Vislt VariableData setDatal 213

Vislt_ VariableMetaData aloc 176
Vislt_ VariableMetaData setCentering 176

Vislt_VariableMetaData setMeshName 176

Vislt VariableMetaData setName 176
Vislt VariableMetaData setType 176
visit_writer - write_curvilinear_mesh 60
visit_writer - write_point_mesh 63
visit_writer - write_regular_mesh 56
visit_writer - write_unstructured_mesh 64
visitbroadcastintfunction 165
visitbroadcaststringfunction 165
visitcommandcallback 182
visitcurvmeshalloc 191
VisltDatalnterface V2.h 147
visitdetectinput 162
visitdnestingsetdimensions 203, 205
visitdnestingsetlevelrefinement 203, 205
visitdnestingsetnestingforpatch 203, 205
visitdomainlistalloc 223
visitdomainlistsetdomains 223
visitgetcurve 216, 217

visitgetmaterial 219

visitgetmesh 183

visitgetvariable 213

visitinitializesm 161
visitmatdataaddcleancell 221, 222
visitmatdataaddmat 220, 221
visitmatdataaddmixedcell 221, 222
visitmatdataappendcells 220, 221
visitmdcurvealloc 177
visitmdcurvesetname 177
visitmdcurvesetxlabel 177
visitmdcurvesetxunits 177
visitmdcurvesetylabel 177
visitmdexpralloc 179
visitmdexprsetdefinition 179
visitmdexprsetname 179
visitmdexprsettype 179
visitmdmataddmaterialname 178
visitmdmatalloc 178
visitmdmatsetmeshname 178
visitmdmatsetname 178
visitmdmeshsetdomai npiecename 201

visitmdmeshsetdomaintitle 201
visitmdmeshsetgroupids 200, 201
visitmdmeshsetgrouppiecename 201
visitmdmeshsetgrouptitle 201
visitmdmeshsetmeshtype 175
visitmdmeshsetname 175
visitmdmeshsetnumdomains 201
visitmdmeshsetnumgroups 200, 201
visitmdmeshsetspatialdim 175
visitmdmeshsettopologicaldim 175
visitmdmeshsetxlabel 175
visitmdmeshsetxunits 175
visitmdmeshsetylabel 175
visitmdmeshsetyunits 175
visitmdmeshsetzlabel 175
visitmdsimaddcurve 177
visitmdsimaddexpression 179
visitmdsimaddmaterial 178
visitmdsimaddmesh 175
visitmdsimaddvariable 176
visitmdsimalloc 173
visitmdsimsetcycletime 173
visitmdsimsetmode 173
visitmdvaralloc 176
visitmdvarsetcentering 176
visitmdvarsetmeshname 176
visitmdvarsetname 176
visitmdvarsettype 176
visitmeshcurvilinear 190
VisltOpenTraceFile 149
VISITPLUGINDIR 167
visitpointmeshalloc 193
visitpointmeshsetcoordsxyz 193
visitprocessenginecommand 162
visitrectmeshalloc 188
visitrectmeshsetcoordsxy 188
VisltSetDirectory 149
VisltSetGetDomainNesting 202
VisltSetGetMesh 183
VisltSetGetVariable 213
VisltSetOption 149
visitsetparallel 161
visitsetparallelrank 161
VisltSetupEnvironment 148
visitworkerprocesscal Iback 165-6
visitstrcmp 182

230

visitucdmeshalloc 197
visitucdmeshsetconnectivity 197
visitucdmeshsetcoordsxyz 197
visitvardataalloc 188
visitvardatasetc 214
visitvardatasetd 214
visitvardatasetf 188, 214
visitvardataseti 214

VTK 9, 129

vtkFloatArray 126, 127
vtkRectilinearGrid 115
vtkStructuredGrid 117
vtkUnstructuredGrid 119, 121, 125

X

X-Y plots 12

