Results of VisIt Regression Test - expressions/tensor_expr

Test Case Errors Images
%Diffs Maximum Baseline Current Diff Map
2D Tensor Maximum Shear
Maximum Shear 2D
 46.09772 .eq. 46.09772 (prec=5) : True
Maximum Shear 2D
 46.09772 .eq. 46.09772 (prec=5) : True
3D Tensor Maximum Shear
Maximum Shear 3D
 12.50000 .eq. 12.50000 (prec=5) : True
Maximum Shear 3D
 12.50000 .eq. 12.50000 (prec=5) : True
2D Effective Tensor
2D Effective Tensor
 81.24039 .eq. 81.24039 (prec=5) : True
2D Effective Tensor
 81.24039 .eq. 81.24039 (prec=5) : True
3D Effective Tensor
Effective Tensor
 13.07670 .eq. 13.07670 (prec=5) : True
Effective Tensor
 13.07670 .eq. 13.07670 (prec=5) : True
3D, Symmetric Eigenvalues and Eigenvectors
First Eigenvalue of 2
 2 .in. 
[3.4142136573791504, 2.0, 0.5857864618301392]
 (prec=5, at=1) : True
Second Eigenvalue of 2+sqrt(2)
 3.414213562373095 .in. 
[3.4142136573791504, 2.0, 0.5857864618301392]
 (prec=5, at=0) : True
Third Eigenvalue of 2-sqrt(2)
 0.5857864376269049 .in. 
[3.4142136573791504, 2.0, 0.5857864618301392]
 (prec=5, at=2) : True
First Eigenvector of (1,0,-1)
 (1, 0, -1) .in. 
[[0.5, -0.70711, 0.5],
  [0.70711, 0.0, -0.70711],
  [0.5, 0.70711, 0.5]]
 (prec=5, at=1) : True
Second Eigenvector of (1,-sqrt(2),1)
 (1, -1.4142135623730951, 1) .in. 
[[0.5, -0.70711, 0.5],
  [0.70711, 0.0, -0.70711],
  [0.5, 0.70711, 0.5]]
 (prec=5, at=0) : True
Third Eigenvector of (1,sqrt(2),1)
 (1, 1.4142135623730951, 1) .in. 
[[0.5, -0.70711, 0.5],
  [0.70711, 0.0, -0.70711],
  [0.5, 0.70711, 0.5]]
 (prec=5, at=2) : True
3D, Symmetric Eigenvalues and Eigenvectors with Repeated values
First Eigenvalue of -1
 -1 .in. 
[8.0, -1.0, -1.0]
 (prec=5, at=1) : True
Second Eigenvalue of -1
 -1 .in. 
[8.0, -1.0]
 (prec=5, at=1) : True
Third Eigenvalue of 8
 8 .in. 
[8.0, -1.0]
 (prec=5, at=0) : True
First Eigenvector of (1,-2,0)
 (1, -2, 0) .in. 
[[0.666667, 0.333333, 0.666667],
  [0.596285, 0.298142, -0.745356],
  [-0.447214, 0.894427, 0.0]]
 (prec=5, at=2) : True
Second Eigenvector of (4,2,-5)
 (4, 2, -5) .in. 
[[0.666667, 0.333333, 0.666667],
  [0.596285, 0.298142, -0.745356],
  [-0.447214, 0.894427, 0.0]]
 (prec=5, at=1) : True
Third Eigenvector of (2,1,2)
 (2, 1, 2) .in. 
[[0.666667, 0.333333, 0.666667],
  [0.596285, 0.298142, -0.745356],
  [-0.447214, 0.894427, 0.0]]
 (prec=5, at=0) : True
Cross Principal Stresses and Eigenvalues
First principal component is first eigenvalue
 -1 .in. 
[8.0, -1.0, -1.0]
 (prec=5, at=1) : True
Second principal component is second eigenvalue
 -1 .in. 
[8.0, -1.0]
 (prec=5, at=1) : True
Third principal component is third eigenvalue
 8 .in. 
[8.0, -1.0]
 (prec=5, at=0) : True
2D, Symmetric Eigenvalues and Eigenvectors
First Eigenvalue of -1
 -1 .in. 
[5.0, 0.0, -1.0]
 (prec=5, at=2) : True
Second Eigenvalue of 5
 5 .in. 
[5.0, 0.0, -1.0]
 (prec=5, at=0) : True
First Eigenvector of (1,-1)
 (1, -1) .in. 
[[0.70711, 0.70711, 0.0],
  [0.70711, -0.70711, 0.0]]
 (prec=5, at=1) : True
Second Eigenvector of (1,1)
 (1, 1) .in. 
[[0.70711, 0.70711, 0.0],
  [0.70711, -0.70711, 0.0]]
 (prec=5, at=0) : True
3D, Complex Eigenvalues and Eigenvectors
First Eigenvalue of 2
 2 .in. 
[2.0, 1.4000000953674316, 0.19999998807907104]
 (prec=5, at=0) : True
Second Eigenvalue of (4+3i)/5
 1.4 .in. 
[2.0, 1.4000000953674316, 0.19999998807907104]
 (prec=5, at=1) : True
Third Eigenvalue of (4-3i)/5
 0.2 .in. 
[2.0, 1.4000000953674316, 0.19999998807907104]
 (prec=5, at=2) : True
First Eigenvector of (0,0,1)
 (0, 0, 1) .in. 
[[0.0, 0.0, 1.0],
  [0.70711, -0.70711, 0.0],
  [0.70711, 0.70711, 0.0]]
 (prec=5, at=0) : True
Cross Check Deviatoric and Principal Stresses
Principal deviatoric and principal-tr()/3 agree
 ['6.00000', '-3.00000', '-3.00000'] .eq. ['6.00000', '-3.00000', '-3.00000']
 (prec=5) : True

Final Return Code: 111